

UW-Madison Nuclear Data Validation Activities for Fusion Applications

Tim Bohm, Jeremiah Oldenburg, Mohamed Sawan, and the CNERG team

UW Fusion Technology Institute (FTI)

1

U.S. National Nuclear Data Week Brookhaven National Laboratory 4-8 November 2019

Outline

- 1) Introduction
- 2) ITER-1D computational benchmark
- 3) MCNP model of Cf-252 source in iron sphere experimental benchmark (Sajo 1993)
- 4) Other Work
 - U.S. FNSF (3-D and 1-D computational benchmark)
 - ITER 3-D computational benchmark
 - JET experimental benchmark

References:

• T.D. Bohm, et al., "UW-Madison Neutronics Activities to Support FENDL", IAEA presentation, September 2019.

• L. Packer, A. Trkov, "FENDL Library for Fusion Neutronics Calculations, Summary Report from the Consultants Meeting, IAEA report, INDC(NDS)-0769.

•T.D. Bohm, "The impact of ENDF/B-VIII.0 and FENDL-3.1d on fusion neutronics calculations", IAEA presentation, October, 2018.

Introduction

- In the design of fusion reactors, radiation transport calculations are very important
- Both deterministic (Discrete Ordinates) and stochastic (Monte Carlo) methods are used
- These transport codes need to have accurate cross section libraries

ITER

ITER Blanket (shield) Module

Important Fusion Neutronics Responses

- Neutron flux/fluence (neutron)
 - structure, magnets
- Radiation damage/dpa (neutron)
 - structural material, magnet degradation
- Helium production (neutron)
 - re-weldability
- Tritium production (neutron)
 - breeding, environmental concerns
- Radiation dose (neutron+photon)
 - insulators, electronics, personnel
- Total nuclear heating (neutron+photon)
 - coolant system design, thermal stress, etc. for structure, magnets
- Activation/shutdown dose (photon)
 - maintenance robotics, personnel
 - waste disposal

Current D-T Fusion Experiments/Reactors

D + T -> He-4 (3.5 MeV) + n (14.1 MeV)

- JET (UK)
- 1983-present
- R_{major}=3 m
- Vol_{plasma}=100 m³
- pulse ~1 sec
- •16 MW_{fusion}
- ITER (France)
- under construction
- R_{major}=6 m
- Vol_{plasma}=840 m³
- pulse ~400-600 sec
- $\bullet 500 \ \text{MW}_{\text{fusion}}$

UW Neutronics Capabilities (3-D)

- DAGMC (detailed 3-D CAD based Monte Carlo transport)
 - Transports directly in the CAD model (not a translator)
 - Handles complex surfaces without simplification
 - Couples to MCNP, Geant4, FLUKA, SHIFT, OpenMC
 - Provides a common domain for coupling to other analysis
 - <u>http://fti.neep.wisc.edu/ncoe/</u>
 - http://github.com/svalinn
- 3-D CAD model based analysis:

ITER BM08

-4

2

Nuclear heating mapped to ANSYS mesh for thermal analysis

Bohm CSEWG Meeting November 2019

FENDL

- The Fusion Evaluated Nuclear Data Library (FENDL) is an international effort coordinated by the IAEA Nuclear Data Section
- Assembles a collection of the best nuclear data from national cross section data libraries for fusion applications
 - ENDF/B (US), JENDL (Japan), JEFF (Europe), TENDL (EU), RUSFOND/BROND (Russia)
- Process uses fusion specific experimental and calculational benchmarks to evaluate the data
- Data available on-line

Request	NITTAT	JEFF-3.2 - Joint Evaluated Fission and F	usion File, coord. by NEA Data Bar	k, 2014 [page] [archive] [retrieve]
CD/DVD with documentation, data, codes, etc.	NEW	RDFF - International Reactor Dosimetry CD/DVD-ROMs available for on-line dow Portable Empire-3.2.2 for Windows - ni	r and Fusion File v1.03 [page] [archi mloading [page] iclear reaction model code system fi	ve] [retrieve] or data evaluation [page] [download]
Quick Links	Main All Reaction D	ata Structure & Decay by A	Applications Doc & Codes	Index Events Links News
S-Lib mic Mass Data Centre	EXFOR Experimental nucleo data	ar reaction LiveChart of Interactive Chart of	luclides Nuclides	CINDA Nuclear reaction bibliography
arged particle erence cross section IOSG-2000	ENDF Evaluated nuclear n libraries	eaction ENSDF evaluated nuclear at	ucture and decay data (+XUNDL) **	Nuclear Science References *
DF Archive				
DF-6 Codes	NuDat 2.6 selected evaluated nuclear structure data **	RIPL reference parameters for nuclear model calculations	IBANDL Ion Beam Analysis Nuclear Data Library	Charged particle reference cross section Beam monitor reactions
DVER	PGAA Prompt gamma rays from neutron capture	FENDL 3.0 Fusion Evaluated Nuclear Data Library, Version 3.0	Photonuclear cross sections and spectra up to 140MeV	IRDFF International Reactor Dosimetry and Fusion File
SDF ASCII Files SDF programs	NAA Neutron Activation Analysis Portal	Safeguards Data recommendations, August 2008	Medical Portal Data for Medical Applications	Standards - Neutron cross-sections, 2006 - Decay data, 2005
tron and Photon raction Data	*Database at the IAEA, Vienna IAEA Nuclear Data Sec	**Database at the US NNDC		
ion Yields	(🚯) 🖏 🔜			7

Source of FENDL-3.1 Data

- 65/180 isotopes in FENDL-3 come from the ENDF/B-VII.1 library
 - See Table 1 in INDC(NDS)-0628
- Some key isotopes for this work:

Isotope	FENDL-2.1	FENDL-3.1
H-1	JENDL-3.3	ENDF/B-VII.1
0-16	ENDF/B-VI.8	ENDF/B-VII.1
Cr-52	ENDF/B-VI.8	ENDF/B-VII.1
Fe-56	JEFF-3	JEFF-3.1.1
Ni-58	JEFF-3	ENDF/B-VII.0
Cu-63,65	ENDF/B-VI.8	ENDF/B-VII.0

ENDF/B-VIII.0 Data

- Major new release of the ENDF/B neutron library
- ACE formatted data for MCNP distributed by LANL

○ https://nucleardata.lanl.gov

- Some key isotope updates for neutron sub-library (see Appendix A in reference* for comprehensive list):
 - H-1,2, Li-6, B-10, O-16, Fe-54,56,57,58, Ni-58-62,64, Cu-63,65, W-182-186, U-235,238, Pu-239

*D.A. Brown et al., "ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards, and thermal scattering data", Nuclear Data Sheets, vol 148, p. 1-142, 2018

Goal of this work

- Look at the impact of using the updated neutron libraries in a realistic model of fusion systems
- Libraries examined:
 - <u>Neutron:</u>
 - 1. FENDL-2.1 (21c)
 - 2. FENDL-3.1 (31b, 31d)-current version 3.1d
 - 3. ENDF/B-VII.1 (80c)
 - 4. ENDF/B-VIII.0 (00c)
 - <u>Photon*:</u>
 - 1. mcplib84 (84p)

*Previous work has shown that mcplib84 produces results similar to the newer MCNP eprdata12 library

> The latest MCNP photon library (eprdata14) has not been tested yet

*Bohm T.D, Sawan M.E. "The impact of updated cross section libraries on ITER neutronics calculations", Fusion Science and Technology, Vol 68 p. 331-335, 2015.

ITER 1-D Cylindrical Calculation Benchmark

- Based on an early ITER design
 Developed for the FENDL evaluation process
- Simple but realistic model of ITER with the Inboard and Outboard portions modeled with the plasma in between
- D-T fusion (14.1 MeV neutrons)
- Flux (neutron and photon), heating, dpa, and gas production calculated

M. Sawan, FENDL Neutronics Benchmark: Specifications for the calculational and shielding benchmark, INDC(NDS)-316, December 1994

ITER 1-D Cylindrical Benchmark continued

Previous Results: Neutron Flux

Max. relative error <0.26%

- With ENDF/B-VIII.0 (00c) see neutron fluxes up to 10% lower than FENDL-3.1
- In FENDL-3.1, Fe-56 and Cu data come from JEFF-3.1.1 and ENDF/B-VII.0

Previous Results: Total nuclear heating

• With ENDF/B-VIII.0 (00c) see total heating up to 10% lower than FENDL-3.1

Bohm CSEWG Meeting November 2019

Isotope substitution study

There is likely a deficiency in the XS data for the structural elements in ENDF/B-VIII.0:

- A. Trkov, R. Capote "INDEN (Post-CIELO) ⁵⁶Fe Evaluation", presented at IAEA FENDL Consultants Meeting, Oct. 2018.
- Repeat the ITER 1-D calculation with ENDF/B-VIII.0 neutron data, but replace certain XS with those from FENDL-3.1d:
 - Fe-56, Ni-58, Ni-60, Cr-52, Cr-53, Cu-63, Cu-65

Results: these isotopes were the main cause of the differences observed in previous work (for more details, see the slides at the end of this presentation)

Replace 25056.00c w/ fe56e80X29r34 in ENDF/B-VIII.0

Test a candidate replacement for fe-56 in ENDF/B-VIII:

- We see the fe56e80X29r34 has a similar shape to ENDF/B-VIII.0
- We see the fe56e80X29r34 results does not show the large decrease in flux in steel region
- We need to consider any Cu, Ni, and Cr updates to see the full impact

MCNP model of Iron Sphere Benchmark Experiment

WISCONSIN

- With FENDL-3.1d, we see highest fluxes in the E=0.4 to 5 MeV region
- With ENDF/B-VIII.0, we see lowest fluxes in the E=0.7 to 10 MeV region
- With fe56e80X29r34, we see results similar to FENDL-3.1d in the E=1.0-10.0 MeV region, but not the big peak at E=0.7-1.0 MeV seen with FENDL-3.1d

Other Work-FNSF Computational Benchmarking

- ➤Need to test on fusion designs other than ITER
 - use different structural materials and tritium breeding materials
- 3-D neutronics model of U.S. Fusion Nuclear Science Facility (FNSF)

• Developing 1-D model for rapid testing of nuclear data:

- Currently 49 radial zones
- Need to add shell plates for SR, VV, Ltshield
- MCNP materials created with PyNE

Other Work-ITER and JET

• 3-D partially detailed model of ITER:

Library	Tally IB TFC (W/cm ³)	Ratio
21c+84p	3.72074E-05	1
31d+84p	3.73618E-05	1.00
80c+84p	3.62283E-05	0.97
00c+84p	3.44389E-05	0.93

Example: Nuclear heating in magnet

- Experimental measurement based benchmarking at JET:
 - Prompt measurements
 - Shutdown dose rate measurements
 - EU-US collaboration

Questions?

(For those interested, there are more details in the following slides)

Bohm CSEWG Meeting November 2019

FENDL continued

- FENDL-2.1 (71 elements/isotopes, 2003) is the reference library for ITER
- FENDL-3.1 has been released with 180 isotopes and energies up to 150 MeV for neutrons, protons, and deuterons
- Libraries available on-line:
 - <u>https://www-nds.iaea.org/fendl21/</u>
 - <u>https://www-nds.iaea.org/fendl3/</u>

Source of FENDL-2.1 data:

No.	Library	NMAT	Materials
1	ENDF/B-VI.8	40	² H, ³ H, ⁴ He, ⁶ Li, ⁷ Li, ⁹ Be, ¹⁰ B, ¹¹ B, ¹⁶ O, ¹⁹ F, ²⁸⁻³⁰ Si, ³¹ P, S,
	(E6)		^{35,37} Cl, K, ^{50,52-54} Cr, ^{54,57,58} Fe, ⁵⁹ Co, ^{61,62,64} Ni, ^{63,65} Cu, ¹⁹⁷ Au, ²⁰⁶⁻²⁰⁸ Pb, ²⁰⁹ Bi, ^{182-184,186} W
2	JENDL-3.3 (J33)	18	1 H, 3 He, 23 Na, $^{46-50}$ Ti, , 55 Mn, $^{92,94-98,100}$ Mo, 181 Ta,V
3	JENDL-3.2	3	Mg, Ca, Ga
	(J32)		
4	JENDL-FF (JFF)	4	¹² C, ¹⁴ N, Zr, ⁹³ Nb
5	JEFF-3 (EFF) JEFF3	4	²⁷ Al, ⁵⁶ Fe, ⁵⁸ Ni, ⁶⁰ Ni
6	BROND-2.1 (BR2)	2	¹⁵ N, Sn

Substitution Results: Fe-56

• With ENDF/B-VIII.0 (00c)+26056.31d, we see neutron fluxes more closely match those of FENDL-3.1d until deep in the FW/Blanket Shield and nearing the VV (Inconel shells) and TF coil (significant Cu content)

• Recall that the ITER 1-D benchmark is composed of alternating SS and water for the FW/Blanket Shield, then a VV composed of an Inconel shell with water cooled SS filler. Cu is present near the Be layer and in the TF coil Bohm CSEWG Meeting November 2019

Substitution Results: Fe-56, Ni-58, Ni-60

• Now we see neutron fluxes more closely match those of FENDL-3.1d near the VV shell (the large peak at the VV shell seen on previous slide is no longer present)

• We still see a large difference at the TF coil

Substitution Results: Fe-56, Ni-58, Ni-60, Cr-52, Cr-53, Cu-63, Cu-65

• Now we see neutron fluxes closely match those of FENDL-3.1d (both near the FW Cu layer and the TF coil which has significant Cu content)

Measurements of neutron transmission in iron spheres from a Cf-252 source were performed by the Czech. National Research Institute (NRI) and the Skoda Company

>This work uses the r=25 cm sphere case described by E. Sajo.

Some of this work was completed by an undergraduate student as a project for the NE 506 Monte Carlo Radiation Transport class

E. Sajo, et al, "Comparison of Measured and Calculated Neutron Transmission Through Steel for a 252-Cf Source", Ann. Nucl. Energy, Vol. 20, No. 9, page 585-604, 1993

MCNP model of Iron Sphere Benchmark Experiment

CNERG

- Modeled and calculated with native MCNP-6.2
- Encapsulated Cf-252 source with guide tubes in the iron sphere
- Used detailed dimensions, material compositions, and source spectrum provided in the Sajo paper, (r_{sphere}=25 cm)
- ➢ Results determined with a ring f5 (next event estimator) tally at

r=100 cm (position of measurement)

Yellow=iron (99.42 w/o Fe) Blue=AlCu alloy (93.9 w/o Al) Pink=SS304 Green=Cf

Bohm CSEWG Meeting November 2019

Results Neutron Flux (preliminary)

Library	E<0.1 MeV	E=0.1-1 MeV	E=1-10 MeV	Total
70c (ENDF/B-VII.0)	1	1	1	1
80c (ENDF/B-VII.1)	0.9972	1.0060	1.0080	1.0054
31c (FENDL-3.1d)	0.8547	1.0201	1.0722	1.0105
00c (ENDF/B-VIII.0)	1.0266	1.0204	0.8940	1.0054
fe56e80X29r34+00c	1.0164	0.9929	1.0575	1.0032

relative error negligible

For the total flux:

- •With FENDL-3.1d, we see the highest total neutron flux
- With ENDF/B-VIII.0, we see neutron fluxes closely match those of ENDF/B-VII.1
- With fe56e80X29r34, we see neutron fluxes slightly less than those of ENDF/B-VIII.0 (Recall this is essentially a 25 cm iron sphere with little other materials)

> Looking at the E=.01 to 10 MeV range:

• With FENDL-3.1d, we see lowest fluxes in the E=.01 to 0.1 MeV region and highest in the E=0.4 to 5 MeV region

• With ENDF/B-VIII.0, we see lowest fluxes in the E=0.7 to 10 MeV region

- With fe56e80X29r34, we see results similar to FENDL-3.1d in the E=1.0-10.0 MeV region, but not the big peak at E=0.7-1.0 MeV seen with FENDL-3.1d
- Recall this is essentially a 25 cm iron sphere with little other materials

Compare calculated neutron spectrum to measurements performed by NRI and Skoda

- Calculations have already been completed (but not plotted)
- Note that these two measurements have been performed with different energy group structures
- ➢ Other?

