Validation of H-H₂O at Elevated Temperatures using Diffusion Experiments

Mike Zerkle Jesse Holmes

Cross Section Evaluation Working Group

Brookhaven National Laboratory

November 4-6, 2019

The Naval Nuclear Laboratory is operated for the U.S. Department of Energy by Fluor Marine Propulsion (FMP), LLC, a wholly owned subsidiary of Fluor Corporation.

Compilation of Historical Thermal Neutron Diffusion Length (L) Measurements for Water

Linear and Power Fit Based on 24 Publications

Linear Least Squares fit of pL vs. T^R

NAVAL NUCLEAR

Experimental Data Compared to Power Fit

Calculating L with MC21 PNDA Simulations

• PNDA flux decay: $\varphi(\mathbf{r}, t) = \varphi_0(\mathbf{r})e^{-\alpha t}$; fundamental eigenvalue α computed with MC21 simulations

•
$$\alpha = v\Sigma_a + vDB_g^2 - CB_g^4 + O(B_g^6) \approx a_0 + D_0x + Cx^2$$
 for $x = B_g^2$

•
$$L \approx \sqrt{\frac{D_0}{2a_0} \left(1 + \sqrt{1 + \frac{4a_0C}{D_0^2}}\right)} \approx \sqrt{\frac{D_0}{a_0} + \frac{C}{D_0}} \approx \sqrt{\frac{D}{\Sigma_a}}$$

• Geometric buckling for spheres: $B_g^2 = \left(\frac{\pi}{r+z}\right)^2$.

- *z* is approximately proportional to λ_{tr} and is computed at 22 C by Sjostrand (1977) for water spheres (with corrections for small geometries).
- λ_{tr} is approximately proportional to *D*, and $L \approx \sqrt{\frac{D}{\Sigma_a}}$.
- The ratio of L at an arbitrary temperature to L at 22 C can be computed from the previously given fit.
- The expected D, λ_{tr} , and z for any temperature can now be computed (accounting for density change), allowing B_g^2 to be determined for water spheres of arbitrary radii and temperature.
- Finally, calculated α can be plotted vs. B_g^2 for many water spheres of varying radii, and then L can be computed by solving for the coefficients a_0 , D_0 , and C with a quadratic fit.

500 K MC21 Calculation Compared to Prediction by Pure Experimental Fit

Calculation of Diffusion Length at 500 K

Difference between MC21 result and pure experimental fit result for 500 K is 0.5%. The uncertainty in MC21-calculated L due to ENDF uncertainty in $\sigma_a(^1H)$ is 0.9%.

Room Temperature and 500 K Results for Several H-H₂O TSL Evaluations

