LLNL Report for USNDP

Nuclear Data Week, November 2019

Ian Thompson

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

LLNL contributions to USNDP

- 0.25 FTE for \$134k
- Coordinate LLNL nuclear data efforts with CSEWG
- Make, Verify, Validate R-matrix evaluations
 - With IAEA, R-matrix workshops, and GNDS-interchange codes.
- Leverage LLNL programmatic funding to provide evaluations for inclusion in ENDF

FY19 Metrics Table

NSR Compilations	0
EXFOR Compilations	0
XUNDL Compilations	0
ENSDF Evaluations submitted	0
ENDF Evaluations	12 (see below)
Disseminations (in thousands)	5 (approx)
Articles	2
Articles Reports	0

ENDF evaluations in FY19: 12 candidates submitted

FY19 FTE Table

PhD Permanent	0.20
PhD Temporary	0
Tech. & Admin.	0.05
Grad. Student	0
Total	0.25

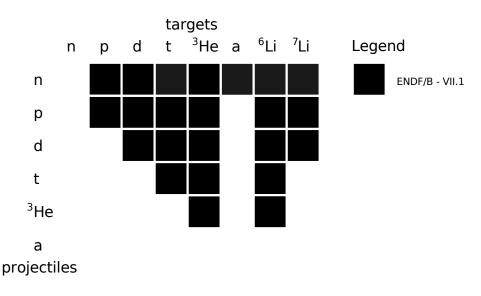
\$134k FY20 funding

\$12k FY18 carry over

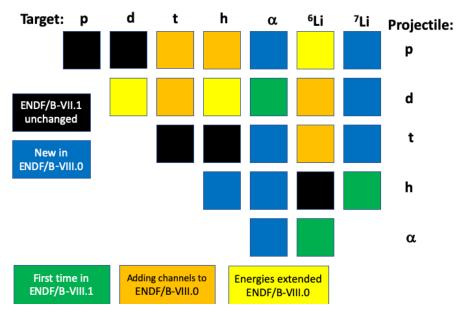
\$122k FY19 total costs

\$24k rollover into FY20

'Proposed scenario': additional \$50k/yr for Sofia Quaglioni


Activity with Current Funding

- National Coordination
 - Coordinate Nuclear Data Efforts with USNDP/CSEWG
 - Attend USNDP/CSEWG meetings
 - Use R-matrix GNDS tools to translate, verify and improve proposed evaluations
 - R-matrix methods: encourage use of Brune basis (soon in SAMMY!)
 - Helping LANL prepare R-matrix parameters for release to CSEWG
- International Coordination
 - Attend IAEA consultants meetings on R-matrix methods
 - Attend INDEN evaluators meeting on light-ion neutron evaluations
 - Projects underway for new evaluations n+9Be, n+14N, n+15N, n+23Na.
- Provide LLNL evaluations for ENDF
 - USNDP funds the translation over to ENDF
 - Delivered LLNL charged-particle evaluations for ENDF/B-VIII release



ENDF Evaluations

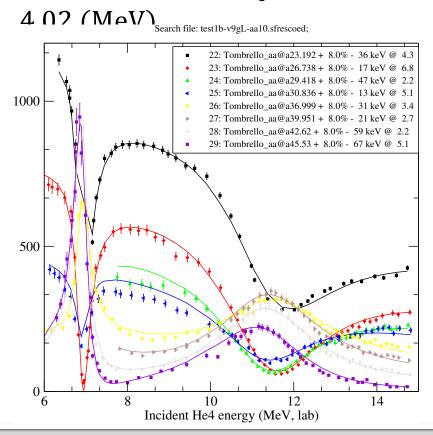
- Charged Particle Evaluations by LLNL
 - submitted to CSEWG November 2018.

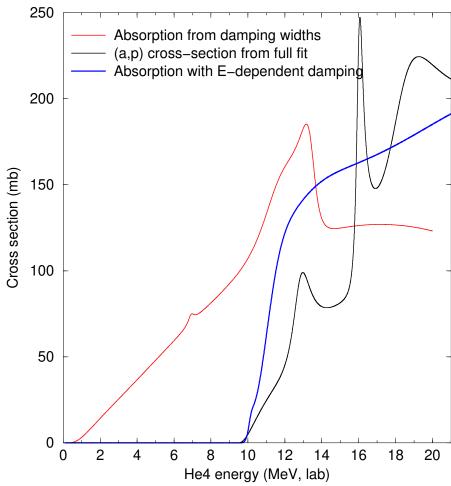
Used in ENDF/B-VIII.0: p+a, t+a, h+a, a+a, p+⁷Li, d+⁷Li, t+⁷Li, h+h

Proposed for ENDF/B-VIII.1: p+t, p+h, p+6Li, d+d, d+t, d+h, d+a, d+6Li t+6Li, h+7Li, a+6Li.

Energy-dependent Damping Widths?

- A simple proposal to include the known energy dependence of flux going to an excluded channel with known threshold E_0 .
- Make the damping width energy-dependent: $\overline{\Gamma}_p(E)$
 - Make energy dependence behave as $\Gamma = 2\gamma^2 P_L(E)$ like R-matrix widths
 - · So choose


$$\bar{\Gamma}_p(E) = \tilde{\Gamma}_p P_L(E - E_0) / P_L(e_p - E_0)$$


- This cuts off the damping for $E \leq E_0$, and gives $\overline{\Gamma}_p(e_p) = \widetilde{\Gamma}_p$ to be fitted.
- Making this work depends on
 - Having good data for angular distributions above the E_0 threshold
 - May need to choose e_p energy in the Brune basis for best physics
 - Knowing physics of missing channels to estimate L and Coulomb barriers
 - For exit in *M*-body hyper-spherical harmonic *K*, use L = K + (3M 6)/2

Example fit with Energy-dependent damping

Refit 4 He + 3 He data. Choose e_p energy in the Brune basis, with L=0, $E_0=$

<u>First attempt</u> at least gives average transfer cross-sections

