

The SREFT (Spatially REsolving Fission Tracker) Time Projection Chamber

US National Nuclear Data Week 2019

Esther Leal Cidoncha, Christopher Prokop, Kyle Schmitt and Shea Mosby 4-8 November 2019

UNCLASSIFIED

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

LA-UR-19-31101

Motivation

- New fission tracking detector at LANSCE.
- To measure …
 - Neutron beam imaging and flux monitoring.
 - Fission Fragments Total Kinetic Energy measurements (TKE) for hot samples and Fission Product Yields (FPY).
 - Minor actinide fission Cross Section ratios.
 - Fission Fragment Angular Distributions (FFAD) and anisotropies.
 - (n,α) and $(n,x\alpha)$ reactions.
- Low cost and relatively easy construction.
- Small size for supporting measurements inside another detector.

LANSCE facility

- Water-cooled W target.
- Flight path 90L (10 m).
- White neutron spectrum (En=0.2-200 MeV).
- ToF resolution ~2ns.

PSR

p beam

Fission tracking detectors at LANSCE

TPC*

(Time Projection Chamber)

- Very precise fission cross section ratios (unc. < 1%).
- ~3000 pads per anode = high number of channels needed.
- High power supply and cooling requirements.
- Custom DAQ system.

* NIFFTE Collaboration

SREFT

(Spatially Resolving Fission Tracker)

- Minor actinide fission cross section ratios (unc. > 1%).
- 187 pads per anode => less channels needed.
- Limited cooling required and low power supply.
- Commercial DAQ system.

Digitizers out of the beam

UNCLASSIFIED

SREFT setup

with larger size.

UNCLASSIFIED

SREFT goals

- Thin-walled chamber to allow good auxiliary detector efficiency for outgoing neutrons and gamma rays.
- E resolution ~1 MeV for FF.
- Angular resolution ~3°, vertex resolution ~1 mm.
- Target imaging makes it possible mounting a ²⁵²Cf source close to the sample for in-situ energy calibration.
- Good alpha particle rejection.

SREFT functioning principle

SREFT functioning principle

x (cm)

Possible calculations

- Good particle identification (PID) from track reconstruction.
- **Cross section ratio** calculation vs incident neutron energy through the time-of-flight technique.

- **TKE** calculation from the K of the individual FF.
- Mass fission yields calculation through the 2E-method from the K of the individual fragments using the momentum and mass conservation.
- Mass resolution within ~4-5 amu.

Other possibilities

• To be used in parallel with other detectors for combined measurements.

DANCE

- (n,γ) reactions.
- Placing SREFT inside DANCE we can measure also (n,f) reactions.
- This would provide information of the gammas emitted from fission reactions.

LENZ

(n,z) reactions.

With SREFT we can provide a measurement of the beam profile and flux in support for LENZ experiment.

Conclusions and future work

- New fission tracking detector SREFT at LANSCE.
- Cross section ratios, FFAD, TKE and FPY measurements.
- Mounting in process: chamber, gas system and electronics (on going).
- Test with ²⁵²Cf source planned for the beginning of 2020.
- Future measurements with minor actinides.
- On beam test planned for next campaign (summer 2020).

11

Extra slides

	NIFFTE TPC	SREFT	Ionization Chamber
Position resolution	0.3 mm	1 mm	None
Gas pressure	1-10 atm	1 atm	1-2 atm
Anode size	11 cm diameter	12 cm diameter	
Channel count	6000	400	<10
Dynamic range per pad	0.01-100MeV	0.5-100MeV	1-100MeV
Gas gain	~50	1	1
Gas mixture	Ar+CO ₂ ,	P-10	P-10

