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The Nuclear Data Pipeline

Our goal is to get the highest quality 
data to users

energyisotopessecurity science



The nuclear data pipeline is more 
of a network



The nuclear data pipeline is more 
of a network



An ENDF 
evaluation  
aims to be a 
Gaussian 
Process 
Regression 
(GPR) model 
built from the 
Bayesian 
Network of 
relevant 
experiments & 
theory models



The assumed 
ENDF GPR model
• For a given reaction rxn, 

every emitted particle p, 
store  
 
 
 

• both as linear 
interpolatable functions

• and, the covariance 
matrices for each (what 
that means is a different 
question…)
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The Nuclear Data 
Belief Network



A belief network is a DAG 
that encodes probabilities 

A
P(A)

• Belief is the  
unconditional  
probability associated  
with a node, P(A) 

• 0 <= P(A) for all values of A; P(A)<=1 is A discrete

• ΣA P(A) = 1

• A can be 

• continuous (cross section at a given energy) or 

• discrete (J) or 

• vector valued (J,Pi or resonance parameters of a 

resonance)



A belief network is a DAG 
that encodes probabilities 

• Belief is the 
unconditional 
probability associated 
with a node, P(A) 

• The conditional 
probability P(B|A) is the 
probability that B 
observed given A. 


• 0 <= P(B|A) <= 1  
for all values of B


• ΣB P(B|A) = 1

A

B

P(A)

P(B)
P(B|A)

The arrow in the graph tells 
you “B” depends on “A”



A belief network is a DAG 
that encodes probabilities 

A

B

P(A)

P(B)
P(B|A)

D
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P(E|C)
P(B|E)

P(D|B)

P(F|D)

P(C)

P(E)
P(D)

P(F)
Probabilistic Reasoning in 
Intelligent Systems, 
Morgan-Kaufmann, 1988 Judea Pearl



Bayes theorem is a form of 
message passing along network 
• Forward problems 

(prediction) follow arrows, 
associated with conditional 
probabilities, P(A|B) 

• Inverse problems 
(inference) run against flow, 
use likelihood L(A|B) gotten 
from Bayes’ theorem 

• Assimilation is an inverse 
problem and runs against 
flow

A

B

P(A)

P(B)

P(B|A)

P(A|B) = P(B|A)P(B)/P(A)  
           = L(A|B) 
           = likelihood that B explains A

L(A|B)



Bayesian update procedure tells us 
how to update belief as add nodes 

A

B

P(A)

P(B)
P(B|A)

P(B)= ΣA P(B|A)P’(A)

A
P’(A)

B
P’(B)

Prediction:



Bayesian update procedure tells us 
how to update belief as add nodes 

A

B

P(A)

P(B)
P(B|A)

P(B)= ΣA P(B|A)P’(A)

A
P’(A)

B
P’(B)

P(A)= ΣB L(A|B)P’(B)

Prediction:

Inference:



A Gaussian process regression (GPR) 
model assumes all probabilities are 

Gaussian 

• A GPR is characterized  
with a set of mean values  
<A>, <B> and covariance  
cov(x) where vector x  
given by x=(A,B) 
• Least squares fitting is simplest GPR

• Famous “Sandwich formula” & sensitivity profiles

• Gaussian process prediction also known as Kriging


• GPR based updating requires lots of linear algebra, 
but very GPU friendly & many codes exist

A

B

P(A)

P(B)
P(B|A)
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Fig. 14. The DANCE detector (picture credits: LANSCE-NS
LA-UR-0802953).

processed into physical quantities, like the total γ cascade
energy, γ multiplicity, individual gamma ray energies, and
neutron time of flight. After analysis of these data and sev-
eral corrections (calibration, dead time correction, back-
ground subtraction) the neutron radiative capture cross-
section σ(n,γ)(En) is obtained. Results are presented here
for three energy ranges: i) thermal energy, ii) resolved res-
onance region, and iii) above 1 keV in the unresolved res-
onance region.

i) For an incident neutron energy of 0.025 eV, the mea-
sured cross-sections for 175Lu(n, γ) and 176Lu(n, γ), are in
good agreement with published values [64] while improv-
ing their precisions. The thermal capture cross-sections of
Lu are important for nuclear reactors, where they are used
to measure the core temperature.

ii) The analysis of the neutron capture experimental
data in the resolved resonance region allows the determi-
nation of the energies of resonances as well as their radia-
tive and neutron widths, and spins. For that purpose, we
rely on a R-matrix code to fit the experimental cross-sec-
tions and determine the characteristics of the resonances.
Figures 15 and 16 display the radiative capture cross-sec-
tions measured for 175Lu and 176Lu, respectively. These
new measurements agree with previous experiments [65,
66]. Moreover, since γ multiplicities have been measured,
spin values could be attributed to several resonances.
In the resolved resonances domain, the analysis of mea-
sured data allowed to extract values of the mean radia-
tive width (⟨Γγ⟩), the mean s-wave level spacing (D0 )
and neutron strength function (S0 ). These values are use-
ful for connecting the evaluations performed in the re-
solved resonance region (using R-matrix) with evaluations

Neutron energy (eV)

−110 1 10
210

C
ro

ss
 s

e
ct

io
n
 (

b
a
rn

)

1

10

210

) @ DANCEγLu(n,
natural

ENDF/B−VII.0 SAMMY7.0 broadened and fitted

Fig. 15. Cross-section for the 175Lu(n, γ) reaction measured
with a natural Lutetium sample in the resolved resonance
range.
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Fig. 16. Cross-section for the 176Lu(n, γ) reaction in the re-
solved resonance range.
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Fig. 17. Cross-section for the 176Lu(n, γ) reaction in the con-
tinuum energy region.

performed in the continuum (using the Hauser-Feshbach
model).

iii) For the Lu isotopes, the unresolved resonance re-
gion extends from a few keV to 1MeV. Unlike the re-
solved resonance region where models only produce a
parametrization of experimental data, continuum mod-
els like the optical model potential can describe experi-
mental data in a more predictive way. Figure 17 displays

Experiment  
#1

p1

p2
p3 …

Slide from D. Brown (Nuclear Science and Technology)

Experiments report a GPR model of say 𝝈(E) 
(at least this is what we want to be reported in 

EXFOR) 

This model depends on a lot of parameters: 
• Target thickness 
• ToF corrections 
• … 
• and data itself
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Fig. 14. The DANCE detector (picture credits: LANSCE-NS
LA-UR-0802953).

processed into physical quantities, like the total γ cascade
energy, γ multiplicity, individual gamma ray energies, and
neutron time of flight. After analysis of these data and sev-
eral corrections (calibration, dead time correction, back-
ground subtraction) the neutron radiative capture cross-
section σ(n,γ)(En) is obtained. Results are presented here
for three energy ranges: i) thermal energy, ii) resolved res-
onance region, and iii) above 1 keV in the unresolved res-
onance region.

i) For an incident neutron energy of 0.025 eV, the mea-
sured cross-sections for 175Lu(n, γ) and 176Lu(n, γ), are in
good agreement with published values [64] while improv-
ing their precisions. The thermal capture cross-sections of
Lu are important for nuclear reactors, where they are used
to measure the core temperature.

ii) The analysis of the neutron capture experimental
data in the resolved resonance region allows the determi-
nation of the energies of resonances as well as their radia-
tive and neutron widths, and spins. For that purpose, we
rely on a R-matrix code to fit the experimental cross-sec-
tions and determine the characteristics of the resonances.
Figures 15 and 16 display the radiative capture cross-sec-
tions measured for 175Lu and 176Lu, respectively. These
new measurements agree with previous experiments [65,
66]. Moreover, since γ multiplicities have been measured,
spin values could be attributed to several resonances.
In the resolved resonances domain, the analysis of mea-
sured data allowed to extract values of the mean radia-
tive width (⟨Γγ⟩), the mean s-wave level spacing (D0 )
and neutron strength function (S0 ). These values are use-
ful for connecting the evaluations performed in the re-
solved resonance region (using R-matrix) with evaluations
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Fig. 15. Cross-section for the 175Lu(n, γ) reaction measured
with a natural Lutetium sample in the resolved resonance
range.
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Fig. 16. Cross-section for the 176Lu(n, γ) reaction in the re-
solved resonance range.
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Fig. 17. Cross-section for the 176Lu(n, γ) reaction in the con-
tinuum energy region.

performed in the continuum (using the Hauser-Feshbach
model).

iii) For the Lu isotopes, the unresolved resonance re-
gion extends from a few keV to 1MeV. Unlike the re-
solved resonance region where models only produce a
parametrization of experimental data, continuum mod-
els like the optical model potential can describe experi-
mental data in a more predictive way. Figure 17 displays
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Slide from D. Brown (Nuclear Science and Technology)

For a given observable, there are many 
experiments, and often several related 

observables 

Theory aims to explain each with a 
parametric form.  
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Fig. 14. The DANCE detector (picture credits: LANSCE-NS
LA-UR-0802953).

processed into physical quantities, like the total γ cascade
energy, γ multiplicity, individual gamma ray energies, and
neutron time of flight. After analysis of these data and sev-
eral corrections (calibration, dead time correction, back-
ground subtraction) the neutron radiative capture cross-
section σ(n,γ)(En) is obtained. Results are presented here
for three energy ranges: i) thermal energy, ii) resolved res-
onance region, and iii) above 1 keV in the unresolved res-
onance region.

i) For an incident neutron energy of 0.025 eV, the mea-
sured cross-sections for 175Lu(n, γ) and 176Lu(n, γ), are in
good agreement with published values [64] while improv-
ing their precisions. The thermal capture cross-sections of
Lu are important for nuclear reactors, where they are used
to measure the core temperature.

ii) The analysis of the neutron capture experimental
data in the resolved resonance region allows the determi-
nation of the energies of resonances as well as their radia-
tive and neutron widths, and spins. For that purpose, we
rely on a R-matrix code to fit the experimental cross-sec-
tions and determine the characteristics of the resonances.
Figures 15 and 16 display the radiative capture cross-sec-
tions measured for 175Lu and 176Lu, respectively. These
new measurements agree with previous experiments [65,
66]. Moreover, since γ multiplicities have been measured,
spin values could be attributed to several resonances.
In the resolved resonances domain, the analysis of mea-
sured data allowed to extract values of the mean radia-
tive width (⟨Γγ⟩), the mean s-wave level spacing (D0 )
and neutron strength function (S0 ). These values are use-
ful for connecting the evaluations performed in the re-
solved resonance region (using R-matrix) with evaluations
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Fig. 15. Cross-section for the 175Lu(n, γ) reaction measured
with a natural Lutetium sample in the resolved resonance
range.
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Fig. 16. Cross-section for the 176Lu(n, γ) reaction in the re-
solved resonance range.
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Fig. 17. Cross-section for the 176Lu(n, γ) reaction in the con-
tinuum energy region.

performed in the continuum (using the Hauser-Feshbach
model).

iii) For the Lu isotopes, the unresolved resonance re-
gion extends from a few keV to 1MeV. Unlike the re-
solved resonance region where models only produce a
parametrization of experimental data, continuum mod-
els like the optical model potential can describe experi-
mental data in a more predictive way. Figure 17 displays
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Slide from D. Brown (Nuclear Science and Technology)

An evaluation is supposed to 
be a GPR model of 

observables required by a 
class of applications 

Mean values & covariances 
determined by using theory 
as regression model of data
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Fig. 14. The DANCE detector (picture credits: LANSCE-NS
LA-UR-0802953).

processed into physical quantities, like the total γ cascade
energy, γ multiplicity, individual gamma ray energies, and
neutron time of flight. After analysis of these data and sev-
eral corrections (calibration, dead time correction, back-
ground subtraction) the neutron radiative capture cross-
section σ(n,γ)(En) is obtained. Results are presented here
for three energy ranges: i) thermal energy, ii) resolved res-
onance region, and iii) above 1 keV in the unresolved res-
onance region.

i) For an incident neutron energy of 0.025 eV, the mea-
sured cross-sections for 175Lu(n, γ) and 176Lu(n, γ), are in
good agreement with published values [64] while improv-
ing their precisions. The thermal capture cross-sections of
Lu are important for nuclear reactors, where they are used
to measure the core temperature.

ii) The analysis of the neutron capture experimental
data in the resolved resonance region allows the determi-
nation of the energies of resonances as well as their radia-
tive and neutron widths, and spins. For that purpose, we
rely on a R-matrix code to fit the experimental cross-sec-
tions and determine the characteristics of the resonances.
Figures 15 and 16 display the radiative capture cross-sec-
tions measured for 175Lu and 176Lu, respectively. These
new measurements agree with previous experiments [65,
66]. Moreover, since γ multiplicities have been measured,
spin values could be attributed to several resonances.
In the resolved resonances domain, the analysis of mea-
sured data allowed to extract values of the mean radia-
tive width (⟨Γγ⟩), the mean s-wave level spacing (D0 )
and neutron strength function (S0 ). These values are use-
ful for connecting the evaluations performed in the re-
solved resonance region (using R-matrix) with evaluations
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Fig. 15. Cross-section for the 175Lu(n, γ) reaction measured
with a natural Lutetium sample in the resolved resonance
range.
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Fig. 16. Cross-section for the 176Lu(n, γ) reaction in the re-
solved resonance range.
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Fig. 17. Cross-section for the 176Lu(n, γ) reaction in the con-
tinuum energy region.

performed in the continuum (using the Hauser-Feshbach
model).

iii) For the Lu isotopes, the unresolved resonance re-
gion extends from a few keV to 1MeV. Unlike the re-
solved resonance region where models only produce a
parametrization of experimental data, continuum mod-
els like the optical model potential can describe experi-
mental data in a more predictive way. Figure 17 displays
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Slide from D. Brown (Nuclear Science and Technology)

human 
intervention

An evaluation is supposed to 
be a GPR model of 

observables required by a 
class of applications 

Mean values & covariances 
determined by using theory 
as regression model of data

Humans are needed:  
• model misfit 
• discrepant data 

Humans introduce bias and 
are not “automatable"
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Fig. 14. The DANCE detector (picture credits: LANSCE-NS
LA-UR-0802953).

processed into physical quantities, like the total γ cascade
energy, γ multiplicity, individual gamma ray energies, and
neutron time of flight. After analysis of these data and sev-
eral corrections (calibration, dead time correction, back-
ground subtraction) the neutron radiative capture cross-
section σ(n,γ)(En) is obtained. Results are presented here
for three energy ranges: i) thermal energy, ii) resolved res-
onance region, and iii) above 1 keV in the unresolved res-
onance region.

i) For an incident neutron energy of 0.025 eV, the mea-
sured cross-sections for 175Lu(n, γ) and 176Lu(n, γ), are in
good agreement with published values [64] while improv-
ing their precisions. The thermal capture cross-sections of
Lu are important for nuclear reactors, where they are used
to measure the core temperature.

ii) The analysis of the neutron capture experimental
data in the resolved resonance region allows the determi-
nation of the energies of resonances as well as their radia-
tive and neutron widths, and spins. For that purpose, we
rely on a R-matrix code to fit the experimental cross-sec-
tions and determine the characteristics of the resonances.
Figures 15 and 16 display the radiative capture cross-sec-
tions measured for 175Lu and 176Lu, respectively. These
new measurements agree with previous experiments [65,
66]. Moreover, since γ multiplicities have been measured,
spin values could be attributed to several resonances.
In the resolved resonances domain, the analysis of mea-
sured data allowed to extract values of the mean radia-
tive width (⟨Γγ⟩), the mean s-wave level spacing (D0 )
and neutron strength function (S0 ). These values are use-
ful for connecting the evaluations performed in the re-
solved resonance region (using R-matrix) with evaluations
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Fig. 15. Cross-section for the 175Lu(n, γ) reaction measured
with a natural Lutetium sample in the resolved resonance
range.
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Fig. 16. Cross-section for the 176Lu(n, γ) reaction in the re-
solved resonance range.
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Fig. 17. Cross-section for the 176Lu(n, γ) reaction in the con-
tinuum energy region.

performed in the continuum (using the Hauser-Feshbach
model).

iii) For the Lu isotopes, the unresolved resonance re-
gion extends from a few keV to 1MeV. Unlike the re-
solved resonance region where models only produce a
parametrization of experimental data, continuum mod-
els like the optical model potential can describe experi-
mental data in a more predictive way. Figure 17 displays
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Slide from D. Brown (Nuclear Science and Technology)

human 
intervention

Generating a processed 
sublibrary can change 

the GPR too:  
• Doppler broadening 
• Grouping
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After review, the assembled beta library was processed and 

tested; results from testing guide further development 

  Sanity tests 

•  “zaloops” 

•  “gamma loops” 

•  Simple format and  
physics tests 

  Critical Assemblies 

•  Bare assemblies, e.g. 

Godiva, Jezebel 

•  Reflected assemblies 

•  Complex geometries 

  Activation Ratios 

•  Foils in Godiva, Jezebel, 

Flattop25 and BigTen 

  LLNL Pulsed Spheres 

  Oktavian Spheres 
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Figure 33.  Central Slice of Case 2 (Configuration B) Showing the Glory Hole Fill. 
(Scales are in centimeters.) 
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Slide from D. Brown (Nuclear Science and Technology)

Benchmarks have their own 
belief network 

ICSBEP proves GPR model of 
fielded experiment and 
simplified GPR models 
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Figure 33.  Central Slice of Case 2 (Configuration B) Showing the Glory Hole Fill. 
(Scales are in centimeters.) 

 
 
  

How to model a critical assembly  
“Jezebel”, a bare sphere of 239Pu

• Geometry of system 
described in transport 
code specification 

• Requires separate 
evaluation of blueprints, 
lab reports, etc. 
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Figure 33.  Central Slice of Case 2 (Configuration B) Showing the Glory Hole Fill. 
(Scales are in centimeters.) 
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Attempts to build trustworthy 
suite of benchmarks should 
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Theory #1

Eur. Phys. J. A (2012) 48: 113 Page 11 of 39

Fig. 14. The DANCE detector (picture credits: LANSCE-NS
LA-UR-0802953).

processed into physical quantities, like the total γ cascade
energy, γ multiplicity, individual gamma ray energies, and
neutron time of flight. After analysis of these data and sev-
eral corrections (calibration, dead time correction, back-
ground subtraction) the neutron radiative capture cross-
section σ(n,γ)(En) is obtained. Results are presented here
for three energy ranges: i) thermal energy, ii) resolved res-
onance region, and iii) above 1 keV in the unresolved res-
onance region.

i) For an incident neutron energy of 0.025 eV, the mea-
sured cross-sections for 175Lu(n, γ) and 176Lu(n, γ), are in
good agreement with published values [64] while improv-
ing their precisions. The thermal capture cross-sections of
Lu are important for nuclear reactors, where they are used
to measure the core temperature.

ii) The analysis of the neutron capture experimental
data in the resolved resonance region allows the determi-
nation of the energies of resonances as well as their radia-
tive and neutron widths, and spins. For that purpose, we
rely on a R-matrix code to fit the experimental cross-sec-
tions and determine the characteristics of the resonances.
Figures 15 and 16 display the radiative capture cross-sec-
tions measured for 175Lu and 176Lu, respectively. These
new measurements agree with previous experiments [65,
66]. Moreover, since γ multiplicities have been measured,
spin values could be attributed to several resonances.
In the resolved resonances domain, the analysis of mea-
sured data allowed to extract values of the mean radia-
tive width (⟨Γγ⟩), the mean s-wave level spacing (D0 )
and neutron strength function (S0 ). These values are use-
ful for connecting the evaluations performed in the re-
solved resonance region (using R-matrix) with evaluations
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Fig. 15. Cross-section for the 175Lu(n, γ) reaction measured
with a natural Lutetium sample in the resolved resonance
range.

Neutron energy (eV)

−110 1 10
210

C
ro

ss
 s

e
ct

io
n
 (

b
a
rn

)

1

10

210

310

410
) @ DANCEγLu(n,

176

ENDF/B−VII.0 SAMMY7 broadened and fitted

Fig. 16. Cross-section for the 176Lu(n, γ) reaction in the re-
solved resonance range.
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Fig. 17. Cross-section for the 176Lu(n, γ) reaction in the con-
tinuum energy region.

performed in the continuum (using the Hauser-Feshbach
model).

iii) For the Lu isotopes, the unresolved resonance re-
gion extends from a few keV to 1MeV. Unlike the re-
solved resonance region where models only produce a
parametrization of experimental data, continuum mod-
els like the optical model potential can describe experi-
mental data in a more predictive way. Figure 17 displays
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Two WPEC subgroups 
actively working to 
automate nuclear data 
Bayesian Network



Nuclear Energy Agency
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Containerization can serve 
multiple purposes
• Reproducibility — one container builds one part of the 

Bayesian network
• Scalability — workload can be distributed across labs & 

continents (“nuclear data cloud”)
• Automation — Updates can be automatically farmed out 

to available resources
• Accuracy — the full Bayesian network is too big for 

anyone institution to update (or even hold in memory), 
with Bayesian message passing the network effectively 
encodes the full covariance of the GPR



Many technical issues remain
• Experiment

• Experimental data missing 
covariances or equivalent

• Experimental data discrepant
• Theory

• Theory models not complete nor 
entirely predictive

• Theory models have misfit
• Processing

• Processing distorts evaluation
• Multiphysics issues in 

application couple processing 
step to application  

• Benchmarks
• Benchmark models incomplete
• Benchmark models not 

trustworthy
• Overall approach

• Belief network too simplistic 
(many more connections 
needed!)

• GPR not applicable in many 
cases (non-linear parameter 
response)

• Dimensions too big for todays 
computer

• ENDF regression model too 
simple, missing physics



Take-away messages

• The consensus nuclear data approach is built off a 
DAG containing various GPR models of important 
things (EXFOR, ENDF libraries, ICSBEP 
benchmarks)

• The nuclear data community is already engaged in 
hybrid human/machine learning: e.g. assimilation and 
adjusted libraries

• We are not ready for pure machine learning: we need 
to get humans out of every step

This could be a VERY fun long term project 
for the global nuclear data community


