

Thermal Neutron Scattering Evaluation Methods Development at ORNL

Chris W. Chapman, Goran Arbanas

Nuclear Data & Criticality Safety Oak Ridge National Laboratory

CSEWG - US National Nuclear Data Week 2019 4–8 November 2019 - Upton, New York

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Overview

- Thermal Scattering Law Covariance Methodology
 - Overview
 - * Light Water
 - * Framework Theory
 - Results and Validation
 - * Differential Data
 - * Integral Benchmarks
- Temperature-Dependence of Polyethylene Thermal Scattering law
- Conclusions

- Goal was to develop a procedure to generate covariance matrix for $S(\alpha, \beta)$ data that incorporated both computational simulations and experimental data
- Experimental data and computer simulation fit is achieved using the Unified Monte Carlo (UMC) method [1]
- Framework is material & simulation method independent
- Demonstrated using light water

- Active area of research, as evident by:
 - -WPEC Subgroup 44 (Vlad's talk)
 - Monte Carlo perturbations of phonon density of states [2]
 - Generalized least-squares uncertainty quantification of LEAPR
 [3] and molecular dynamics parameters [4] to data

TSL Covariance - Light Water

- Water is difficult to model computationally
- Properties are calculated using molecular dynamics (MD)
- Models categorized by the number of 'sites'
 - 3-6 sites, extra sites are H 'dummy' particles
- Over 30 different models of water exist

LOAK RIDGE

TSL Covariance - Simulation

• Used the TIP4P/2005f [5] parameter set and varied 8 model parameters (7 in red below plus spacing between oxygen and 'dummy' atoms) using Latin hypercube sampling ($\pm 5\%$) to ensure representative sampling of phase space

$$V_{i,j}(r_{i,j}) = \frac{1}{4\pi\varepsilon_o} \frac{q_i q_j}{r_{ij}} + 4\varepsilon \left(\left(\frac{\sigma}{r_{ij}}\right)^{12} - \left(\frac{\sigma}{r_{ij}}\right)^6 \right) + D_r \left[1 - e^{-\beta \left(r_{ij} - b_o\right)^2} \right] + \frac{1}{2} \frac{k_\theta}{2} \left(\theta_{ijk} - \theta_o\right)^2$$

- 2048 randomly generated parameter samples were generated, of which 1615 successfully completed (job failures due to unphysical combination of parameters)
- From those 1615, the 250 simulations with the diffusion coefficient and density closest to their experimental values were chosen

TSL Covariance - Simulation

- These 250 accepted results were used to compare against experimental data gathered at the SNS
 - 300K measurement performed by RPI in 2011 at SEQUOIA beamline
 - 55, 160, 250, 600, 1000, 3000, and 5000 meV incident neutron energies
- Phonon density of states (pDOS) calculated from trajectory information of simulations, which were then used to calculate $S(\alpha, \beta)$
- Simplified model of SEQUOIA detector in MCNP used to include experimental effects

TSL Covariance - UMC

- Results fit to data using UMC method, where simulations are assigned a weight used to calculate mean and covariance values
- Weight for the k^{th} simulation is calculated by:

$$\boldsymbol{\omega}_{k} = \exp\left\{-\frac{1}{2}\left[(\mathbf{y}_{k} - \mathbf{y}_{E})^{\mathsf{T}} \cdot \mathbf{V}_{E}^{-1} \cdot (\mathbf{y}_{k} - \mathbf{y}_{E})\right]\right\}$$

$$\langle x_i
angle = \lim_{M \to \infty} \frac{\sum_{k=1}^M x_{ik} \omega_k}{\sum_{k=1}^M \omega_k}, \qquad \langle \mathbf{V}
angle_{i,j} = \lim_{M \to \infty} \frac{\sum_{k=1}^M x_{ik} x_{jk} \omega_k}{\sum_{k=1}^M \omega_k} - \langle x_i
angle \langle x_j
angle$$

TSL Covariance - UMC

- UMC weights then used to calculate mean values and covariance matrices of:
 - TIP4P/2005f parameters
 - Thermophysical properties
 - -pDOS
 - Double differential & total scattering cross section
- Mean values and variance of thermal scattering law $\mathit{S}(\alpha,\beta)$ also generated
 - Methods of storing $S(\alpha, \beta)$ covariance matrix not studied here

TSL Covariance - Correlation Matrices

TSL Covariance - S(q, E) & Uncertainties

TSL Covariance - DDXS

CAK RIDGE

TSL Covariance - DDXS (cont.)

CAK RIDGE

TSL Covariance - Total XS

Scattering Cross Section of Light Water

TSL Covariance - Benchmarks

- Compared averaged $S(\alpha, \beta)$ against ENDF/B-VIII.0 evaluation for 3 sets of benchmarks: LCT-078 (298K), LCT-079 (300K), LCT-080 (298K)
 - Benchmarks were chosen because they are all at temperatures close to the experimental temperature (300K) and are well characterized
- Need to ensure covariance matrix reproduces similar spread to those generated by ensemble of Monte Carlo runs
- Covariance matrix of pDOS used to generate 250 pDOS

TSL Covariance - LCT-078, -079, & -080 Validation

TSL Covariance - LCT-079-005 Validation

• Error bars represent either benchmark or Monte Carlo uncertainty

Temperature Dependence of Polyethylene

- Aim is to determine if there are any temperature-dependent effects of polyethylene not present in the current ENDF evaluation
- Carried out in collaboration with RPI as a follow up on [6]
- Experiments carried out at 2 different beamlines
 - ARCS: Direct geometry configuration at T=5, 100, 196, 268, 295, 313K
 - VISION: Indirect geometry at T=5, 20, 40, 60, 77, 100, 120, 140, 160, 180, 196, 220, 233, 240, 263, 283, 293.6, 300, 303, 313, 323, 333, 343, 350K

Temperature Dependence of Polyethylene - ARCS

Temperature Dependence of Polyethylene - VISION

• Shifted peaks represent changes in lattice parameters

National Laboratory 20

CAK RIDGE

- Methodology developed for generalized generation of covariances for thermal scattering files
- Framework subsequently tested on light water by generating covariance of pDOS with encouraging results
- Preliminary results suggest temperature effects of polyethylene may warrant further investigation

Acknowledgments

- This work was supported by the Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy
- ORNL: Marco Pigni (RNSD), Alexander Kolesnikov, Doug Abernathy, Luke Daemen (SNS)
- RPI: Carl Wendorff, Kemal Ramic, Yaron Danon, Emily Liu
- This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

- 1. R. Capote and D. L. Smith, "An Investigation of the Performance of the Unified Monte Carlo Method of Neutron Cross Section Data Evaluation," *Nuclear Data Sheets*, vol. 109, pp. 2768-2773, 2008
- 2. J. C. Holmes, A. I. Hawari, and M. L. Zerkle, "A Phonon-Based Covariance Methodology for ENDF S(α, β) and Thermal Neutron Inelastic Scattering Cross Sections," *Nuclear Science and Engineering*, 184, 1, pp. 84, 2016
- 3. G. Noguere, J. Scotta, C. D. S. Jean, and P. Archier, "Covariance matrices of the hydrogen neutron cross sections bound in light water for the JEFF-3.1.1 neutron library," *Annals of Nuclear Energy*, 104, 132 (2017)
- 4. J. P. Scotta, G. Noguere, and J. I. Marquez Damian, "Generation of the H-1 in H2O neutron thermal scattering law covariance matrix of the CAB model," *EPJ NUCLEAR SCIENCES & TECHNOLOGIES*, 4 (2018)
- 5. M. Gonzalez and J. Agascal, "A flexible model for water based on TIP4P/2005," *The Journal of Chemical Physics*, vol. 135, 2011.
- 6. K. Ramić et. al., "Thermal scattering law of (C₂H₄)_n: Integrating experimental data with DFT calculations," *Annals of Nuclear Energy*, vol. 120, pp. 778-787, 2018

Questions?

Auxiliary Slides - TIP4P/2005f Parameters Results

Parameter	UMC mean value	UMC uncertainty	Published Value	Relative Error
β	2.291E+01	6.672E-01 (2.91%)	2.287E+01	0.15%
b_0	9.441E-02	2.707E-03 (2.87%)	9.419E-02	0.23%
d_0	1.545E-02	4.664E-04 (3.02%)	1.546E-02	0.08%
D_r	4.34152E+02	1.23567E+01 (2.85%)	4.32581E+02	0.36%
ε	7.717E-01	2.141E-02 (2.77%)	7.749E-01	0.42%
$K_{ heta}$	3.6695E+02	1.0209E+01 (2.78%)	3.6781E+02	0.23%
σ	3.1679E-01	7.6056E-03 (2.40%)	3.1644E-01	0.11%
θ_0	1.068E+02	3.087E+00 (2.89%)	1.074E+02	0.54%

 Precision of each value chosen to match precision of published value

Auxiliary Slides - Thermophysical Properties Results

Property	UMC mean value	UMC uncertainty	Published Values	Exp. Value
Dipole Moment (p)	2.299E+00	1.597E-01 (6.949%)	2.319E+00	1.8546E+00
Dielectric Constant (ε_r)	5.518E+01	1.230E+01 (22.29%)	5.53E+00	7.84E+01
Density (ρ)	9.961E-01	7.165E-02 (7.193%)	9.977E-01	9.97E-01
Diffusion Coefficient (D_c)	2.241E+00	3.644E-01 (16.26%)	1.93E+00	2.27E+00
Isothermal Compressability (κ)	4.953E-01	5.402E-02 (10.91%)	4.46E-01	4.95E-01
Heat Capacity (c_p)	7.080E+01	1.471E+00 (2.078%)	N/A	7.441E+01

Auxiliary Slides - Correlation of Thermophysical Properties

Frequency plots of thermophysical properties Blue lines are reference values from [5], Red lines are experimental values

Auxiliary Slides - Total XS with experimental data

