IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

Nuclear Data Evaluation Work at IRSN

Luiz Leal

NDAG BNL, NY

IRSN / PSN-EXP/SNC Novembre 7, 2019

© IRSN

Appendix B Nuclear Data

OUTLINE

- 1. Evaluations Performed at IRSN
- 2. Measurements Efforts
- 3. Concluding remarks

		-		-			~		-	
<mark>Priority Needs</mark> */ Additional Needs		Ihermal scattering (Paraffinic Oil, HF, Silicone Oil, UO ₂ F ₂ , PuH ₂ , UH ₃ , Paraffin, U ₃ O ₈ , U ₃ Si ₂ , UC, PuO ₂ , etc.), ²³⁹ Pu, Fe, Cr, ²³⁷ Np, Pb, ⁵⁵ Mn, Ti, ²⁴⁰ Pu/ ²³³ U, Th, Be, ⁵¹ V, Zr, F, K, Ca, Mo, Na, La								
Completed Evaluations (FY)		Minor Actinides (13), SiC(17), SiO ₂ (17), C ₅ O ₂ H ₈ (16), CH ₂ (17), Be (17), BeO (17), Graphite (17), UO ₂ (17), UN (17), ⁵⁵ Mn (12), ^{56,66} Ni (14), ^{150,128,183,184,186} W (14), Ca (16), ⁵⁵ Co (17), ^{65,65} Cu(17)								
	Materials	Pre FY2018	FY2018	FY2019	FY2020	FY2021	FY2022	Post- FY2022		
	Calcium (Ca)									
	Cerium (Ce)									
nts	Iron (Fe)									
ne	Molybdenum (Mo)									
Irei	Tantalum (Ta)									
ast	Vanadium (V)									
Me	Zirconium (Zr)									
	Polyethylene (CH ₂)	Hi0 / CHi								
	Lucite (C ₅ O ₂ H ₈)									
	Materials	Pre FY2018	FY2018	FY2019	FY2020	FY2021	FY2022	Post- FY2022		
	Calcium (Ca)									
	Cerium (Ce)									
	Cobalt (Co)									
	Copper (Cu)									
	Dysprosium (Dy)									
	Gadolinium (Gd)									
	Iron (Fe)									
	Lead (Pb)									
	Oxygen (O)									
	Rhodium (Rh)									
	Plutonium-239									
8	Tantalum (Ta)									
ion	Uranium-234									
tat	Uranium-235									
alı	Uranium-236									
\mathbf{E}	Uranium-238									
	Vanadium (V)									
	Zirconium (Zr)									
	Lucite (C ₅ O ₂ H ₈)									
	Polyethylene (CH ₂)									
	Beryllium (metal)									
	Beryllium Oxide (BeO)									
	Crystal Graphite		F	xtract	from fi	ve vea	r plan	2018-2	022	
	Reactor Graphite						pich	_0.02		
	Silicon Carbide (SiC)									
	Silicon Dioxide (SiO ₂)									
	Uranium Dioxide (UO ₂)									

Evaluation Work

lsotope	Energy Range	Resonance Covariance Evaluation	Target date for delivery the evaluation
²³³ U Thermal to 2 keV		RP + CV	Ongoing
²³⁹ Pu	Thermal to 4 keV	RP + CV	Ongoing
Gd isotopes	Varies according to the isotopes	RP + CV	Completed
⁵⁶ Fe, ⁵⁴ Fe	Thermal to 2 MeV Thermal to 1.2 MeV	RP + CV	Ongoing
Pb isotopes (204, 206, 207, 208)	Varies according to the isotopes Common task IRSN-ORNL	RP + CV	Ongoing
Mo isotopes	Varies according to the isotopes	RP + CV	Ongoing

Project Activities

- I. ²³³U resolved resonance region evaluation:
 - a) Extension of the resolved resonance region from 600 eV to 2 keV;
 - b) Use of high resolution transmission data measured at the Oak Ridge Linear accelerator (ORELA) at helium liquid temperature ~ 10 K;
 - c) Use of high resolution fission cross section data measured at ORELA;
 - d) Use existing capture data up to 1 keV. This data include impurities and questionable resolution;
 - e) Recent alpha measurements done at n_TOF will be included in the evaluation;
- II. ²³³U unsolved resonance region: Task under development !!

Some Results

Total, Fission and Capture Cross Section in the range 0 - 200 eV

Some Results

Total and Fission Cross Section in the range 1500 - 2000 eV

ETSON

RS

²³⁹Pu Evaluation: Motivaions

- 1. Previous evaluation use LSSF=0 with no FILE3 added;
- 2. Issues on reproduction cross section from 2.5 keV to 4 keV;
- 3. Feasibility of extending the RR from 2.5 keV to 4 keV;
- High resolution transmission and fission data used;
- 5. External energy levels determined;

Energy bound levels and energies above 2. 5 keV.

E _r (eV)	Γ _γ (meV)	Γ _n (meV)	Γ _{f1} (meV)	Γ _{f2} (meV)	J⊓	
Energy bound Levels						
-149.141	47.182	542.357	4226.105	0.0	1+	
-8.068	49.725	0.141	-1.499	0.0	1+	
-7.019	70.066	17.548	-117.345	223.288	0+	
-0.514	24.005	0.118	15.237	1189.353	0+	
-0.020	21.029	6.597 x10 ⁻⁸	-4.880	0.0	1+	
Energy levels above 4 keV						
4006.706	39.000	19.901	48.847	0.0	1+	
4022.478	39.000	4.963 x 10 ⁻⁶	835.807	121.703	0+	
4035.401	39.000	2837.183	-181.877	0.0	1+	

External levels contribution on the scattering cross-section in the energy ranges 10⁻⁵ eV to 4 keV

Experimental Data

Transmission (Total Cross Section)				
Data Set	Energy (eV)	Flight-Path (meter)		
Bollinger et al.[4]	0.01 - 1.0	Fast Chopper		
Harvey (0.00638 atoms/barn) [2]	0.3 - 40.0	18.0		
Harvey (0.01803 atoms/barn) [2]	0.3 - 100.0	18.0		
Harvey (0.07471 atoms/barn) [2] (77 K)	30.0 - 4000.0	80.4		
	Fission			
Gwin [6]	0.01 - 4.0	25.6		
Gwin [8]	0.01 - 20.0	8.0		
Weston [3]	100.0 - 4000.0	86.5		
Weston [9]	0.02 - 40.0	18.9		
	Capture			
Gwin [6]	0.01 - 2.0	25.6		
Gwin [7]	0.01 - 100.0	40.0		
Mosby [5]	10.0 - 1000.0	25.6		

IRSN ETSON

²³⁹Pu Thermal Values

Quantity (barns)	Standard	ENDF/B-VIII (barns)	²³⁹ Pu (Rev) (barns)
${f O}_{f}$	752.4 ± 2.2	747.2	750.4
σ	269.8 ± 2.5	270.1	269.9
σ _s	7.8 ± 1.0	8.1	7.9

SAMMY Fit of the Data

Benchmark k_{eff} results for TEX experiments

Case	Thickness	Number of CH ₂	Benchmark	Uncertainty	EALF	k _{eff}	
	of CH ₂ (inches)	moderating ² layers	k _{eff}		(MeV)	ENDF/B- VIII.0	This work
1	0	0	0.99991	0.00256	7.59E-02	1.00319	1.00441
2	1/16	17	1.00078	0.00228	5.37E-03	1.00075	1.00151
3	3/16	12	1.00081	0.00212	2.45E-04	1.01137	1.00708
4	7/16	8	1.00112	0.00266	3.35E-05	1.00352	0.99916
5	1	6	1.00006	0.00178	2.08E-06	1.00626	1.00211

Gd Evaluation (collaboration with ORNL - V. Sobes)

RPI experimental data measured at the 25.59725 meters flight-path

Data	Energy range (eV)	Nature
Transmission	0.2 - 300.0	natural
Transmission	0.3 - 500.0	natural
Transmission	0.3 - 1000.0	natural
Capture	0.2 - 1000.0	91.74 % Gd155 enriched
Capture	0.2 - 1000.0	90.96 % Gd157 enriched
Capture	0.2 - 1000.0	natural

Gd Evaluation (new capture measurements)

n-TOF experimental data measured at the 183.90 meters flight-path

Data	Energy range (eV)	Nature
Capture	1.0 - 1000.0	91.74 % Gd155 enriched
Capture	1.0 - 1000.0	88.32 % Gd157 enriched

Gd RPI data (SAMMY Fitting) resonance range extended to 500 eV for ^{155,1557}Gd

Gd RPI data (SAMMY Fitting) resonance range extended to 500 eV for ^{155,1557}Gd 250-500 eV

RSN ETS

¹⁵⁷ Gd preliminary test

⁵⁴Fe Evaluation in the Resolved Resonance*

- Natural Iron: ⁵⁶Fe(91.75 %), ⁵⁴Fe(5.85 %) and ⁵⁷Fe(2.12 %);
- Resonance region extended from 700 keV to 2 MeV;
- High resolution transmission data of Cornelis (GELINA) and Harvey (ORELA);
- Calculated direct capture with the CUPIDO code from G. Arbanas (ORNL) included;
- Capture and DDX Scattering cross section needed;
- First inelastic channel opens 1.434 MeV;
- *Task on hold due to:
- a) Lack of good transmission data above 1 MeV !!
- b) No capture data with good resolution available !!

⁵⁴Fe Resolved Resonance

Motivation for evaluating ⁵⁶Fe in the Resolved Resonance Region up 2 MeV

- New high resolution transmission measurements done at the RPI extending the resonance region up to 5 MeV;
- Inelastic cross-section measurements done at IRMM;
- Use the SAMMY/RML feature to include inelastic channel in the R-matrix analysis
- Improve results of benchmark systems calculations
- Ten days beam time awarded at J-PARC to measure transmission and capture cross section below 50 keV for ⁵⁴Fe, ⁵⁶Fe, and ⁵⁷Fe. Enriched samples provided by J-PARC.

Pb Resonance Evaluation (204, 206, 207, 208) (collaboration with ORNL - Vladimir Sobes)

Motivation :

- Transport casks
- Shielding in fuel cycle nuclear facilities and laboratories

lsotope	Abundance	Thermal Capture
		(mbarns)
Pb-204	1.4%	703± 35
Pb-206	24.1%	26.6± 1.2
Pb-207	22.1%	622 ± 14
Pb-208	52.4%	0.23 ± 0.02

- Assessment of existing evaluations (ENDF, JEFF, JENDL) is being conducted.
- Transmission and capture data for enriched samples are needed!

Mo Resonance Evaluation (95, 96Mo)

Motivation :

- Research and naval reactors fuel
- Burn-up credit (one of the major absorbers)
- UPuMoZr residues in reprocessing plants

Transmission data and Capture cross section measurements have been carried out recently at J-PARC by IRSN and JAEA

- Assessment of existing evaluations (ENDF, JEFF, JENDL) is being conducted.
- RPI transmission data for enriched ^{95,96}Mo are needed;

Transmission and capture measurements for ⁹⁵Mo done by Paul Koehler not yet available.

lsotope	Composition (%)	Thermal Cross Section (barns)	Resonance Integral (barns)
⁹² Mo	14.84	0.08±0.02	0.83
⁹⁴ Mo	9.25	0.34±0.02	1.12
⁹⁵ Mo	15.92	13.4±0.3	118±7
⁹⁶ Mo	16.68	0.5±0.3	17±3
⁹⁷ Mo	9.55	2.2±0.2	14.4±3.0
⁹⁸ Mo	24.13	0.130±0.006	6.7±0.3
¹⁰⁰ Mo	9.63	0.199±0.002	3.76±0.15

Concluding Remarks

- IRSN continues to work close to the NCSP agenda on differential data evaluation;
- Final evaluation includes resonance parameters and resonance parameter covariance;

IRSN priority list (to be completed)

Pu-239 (*see TEX preliminary results*), Pu-240, Pu-241, Am-241, U-235, U-238, U-234 Gd isotopes, Mo isotopes, Fe-54, Fe56, Pb-204, Pb-206, Pb-207, Pb-208 Cl-35, Cl-37, F-19, Nickel isotopes, Sm-149, Sm-152, Cs-133, Si isotopes, Ca isotopes, Mn-55, Nd-143

