Evaluation updates for ${ }^{208} \mathrm{~Pb}$ and ${ }^{234,236 \mathrm{U}}$

Ionel Stetcu, T. Kawano, A. Lovell
LANL, T-2

CoH_{3} New Evaluation of ${ }^{208} \mathrm{~Pb}$, (n,n'), (n,2n), and (n,3n)

- New evaluation better agrees Simakov data

Angular distributions

- Need to re-investigate if Frehaut data should be renormalized

Evaluation of ${ }^{234,236 \mathrm{U}}$

$>$ Extensive and consistent evaluations based on CoH 3 calculations, with parameters adjusted to experimental data (DANCE, WNR)

- All open channels included
\Rightarrow KALMAN-based evaluation for fission channel to include cross section data from WNR
> 234,236U: re-evaluation of nubar, consistent PFNS
$>$ PFGS and gamma multiplicity taken from the recent ${ }^{235} \mathrm{U}$ evaluation (we could do better)

Evaluation ${ }^{234,236} \mathrm{U}$ (capture)

$>$ Resonance parameters for ${ }^{236} \mathrm{U}(\mathrm{n}, \mathrm{\gamma})$ refitted to DANCE data, but only for the s wave and in different format than currently in ENDF (not delivered by experimentalist colleagues yet)
$>$ Data for ${ }^{234} \mathrm{U}(\mathrm{n}, \mathrm{\gamma})$ will be analyzed this summer (before September?) soon.
$\Rightarrow \mathrm{CoH}_{3}$ evaluation

- Width corrections fluctuation of Moldauer, with the Engelbrecht-Weidenmüller transformation (strict treatment of the directly coupled channels in the Hauser-Feshbach theory), the coupled-channels optical potential of Soukhovitskii
- Same parameters used for the suite of U isotopes

Baramsai et al, PRC 96 (2017) 024619

CoH_{3} evaluation

Evaluation of ${ }^{234,236} \mathrm{U}$ (fission cross section)

\square Added in the fit data by Lisowski and Tovesson
\square Small changes from ENDF/B-VIII. 0
$\square \mathrm{CoH} 3$: the fission barriers and transmission coefficients in different fission channels are adjusted to reproduce exactly the evaluated fission data.

One needs to compare with other isotopes

\bar{v} evaluations

$>$ Neutron emissions strongly influenced by TKE
$>$ No measurements for TKE in minor actinides
$>$ Extend using the multichance fission probabilities above the threshold for multichance fission

Weak constraints on the fit

Select ICSBEP benchmarks

Benchmark	B-VIII.0	B-VIII.0+U6	B-VIII.0+U4	B8+U4+U6	Exp
HEU-MET-FAST-007-001	0.99327	0.99308	0.99328	0.99308	$0.9950(24)$
HEU-MET-FAST-007-002	0.99855	0.99877	0.99876	0.99875	$0.9964(14)$
HEU-MET-FAST-078-027	0.99513	-	0.99540	-	$1.000(3)$
HEU-MET-FAST-087-001	1.00013	-	1.00006	-	$0.9987(13)$
HEU-MET-FAST-092-001	1.00141	-	1.00149	-	$0.9989(13)$

Important to check the capture in ${ }^{234} \mathrm{U}$ against experimental data

Covariances

${ }^{236} \mathrm{U}(\mathrm{n}, \mathrm{f})$

Work in progress

