

Measurement of γ-ray emission probability in the decay of ¹³⁷Ce^g and ⁸⁵Y^g

M. Shamsuzzoha Basunia
USNDP meeting, BNL, Nov 4-8, 2019

Background

• Dr. Nesaraja presented the case of the γ -ray emission probability in ¹³⁷Ce^g decay at the NSDD 2019 meeting, IAEA, Vienna.

Ref.	$I_{\gamma \mathrm{p}}/I_{\gamma \mathrm{d}}$	%P _γ (447)	Ref.	%P _γ (447)
1975He20 (PRC)	4.91 (15)	2.24 (10)	1983Pe16 (NDS)	2.24 (10)
2007Br23 (NDS)		1.68 (6)	1990Pe02 (NDS)	1.78 (8)
2012To09 (PRC)		1 69		

PHYSICAL REVIEW C

VOLUME 12, NUMBER 4

OCTOBER

Systematic study of the structure of odd-mass lanthanum nuclei. I. Levels in 137 La from 137 Ce $^{m+g}$ decay*

E. A. Henry, N. Smith, P. G. Johnson, and R. A. Meyer Lawrence Livermore Laboratory, Livermore, California 94550 (Received 31 March 1975)

 ϵ + β + decay $\frac{254\gamma}{137}$ Ce g.s (Daughter $T_{1/2}$ = 9.0 (3) hr) $\frac{447\gamma}{137}$ La

¹³⁷Ce^m (Parent T_{1/2}= 34.4 (3) hr)

TABLE I. γ rays which follow 100 Ce° decay.

E_{γ}		I_{γ} (rel.) ^a	Assignment from-to
10.56	(4) b, c		10-0
148.83		0.5 (2)	641-493
217.03		2.2 (3)	926-709
433.22	(9)	29.1 (15)	926-493
436.59	(9)	149 (5)	447-10
447.15	(8)	1000 ^d	447-0

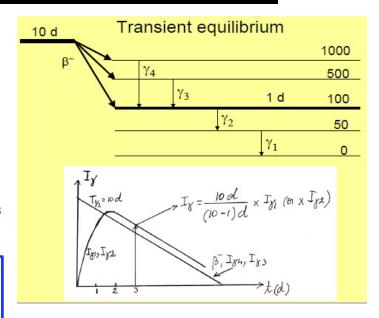
^a To obtain absolute photon intensities, multiply by 0.002 24(10).

^b 10.56 keV obtained from energy differences of cascade and crossover transitions, $E_{\gamma} = 10.61$ keV using a LEPS; see text.

^c Uncertainties in the last significant figures are shown in parentheses.

^d In transient equilibrium spectra $I(254\gamma)/I(447\gamma)$ = 4.91(15).

Observations:

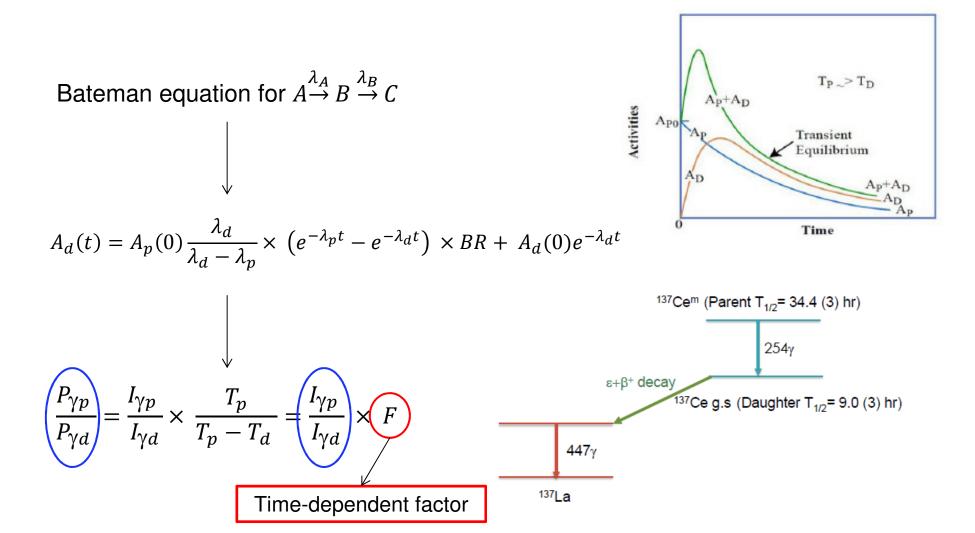

Opinion on the ¹³⁷Ce decay issues presented by Caroline Nesaraja at the 23rd NSDD technical meeting, April 8-12, 2019, Vienna, IAEA.

Shamsuzzoha Basunia April 12, 2019

Problem Statement:

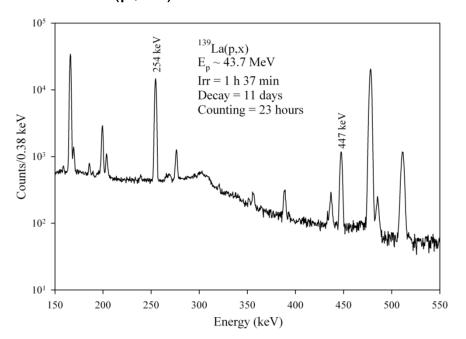
From $^{137\text{m}}$ Ce IT (34.4 h) decay \longrightarrow $^{137\text{g}}$ Ce (9.0 h) EC Decay \longrightarrow 137 La measurements reported in 1975He20 – a %l γ (477 γ) (137 La) =2.24 (10) value may be obtained multiplying the relative intensity of 1000 with a multiplication factor of 0.00224 (10). However, 2007Br23 (Evaluation) give %l γ (477 γ) =1.68 (6) based on a multiplication factor of 0.00168 (6).

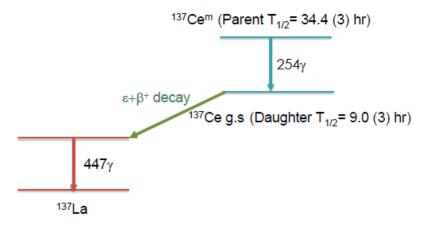
• 1975Bu12 (NDS) - 1.4 (3) - based on data from a 1969 MSU Thesis.



[Ref.]	$I_{\gamma \mathrm{p}}/I_{\gamma \mathrm{d}}$	%P _γ (447)
1975He20 (PRC)	4.91 (15)	2.24 (10)
1990Pe02 (NDS)		1.78 (8)
2007Br23 (NDS)		1.68 (6)
2012To09 (PRC)		1.69

New experimental data are needed to solve the discrepancy


γ -ray emission probability in transient equilibrium



Measurements:

- At 88-Inch cyclotron, LBNL proton beam, E=57 MeV
- 139La(p,3n)137Cem,g

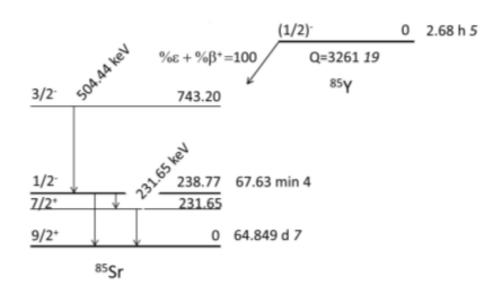
$$\frac{P_{\gamma p}}{P_{\gamma d}} = \frac{I_{\gamma p}}{I_{\gamma d}} \times \frac{T_p}{T_p - T_d} = \frac{I_{\gamma p}}{I_{\gamma d}} \times F$$

• We identify the incorrect use of the time-dependent factor in 1975He20

Results: γ -ray emission probability in ¹³⁷Ce^g decay

F=1.354 (17)

Sample #/ [Ref.]	$I_{\gamma p}/I_{\gamma d}$	$I_{\gamma p}/I_{\gamma d} \times F$	%P _γ (447)
This work	6.78 (9)	9.18 (17)	1.21 (3)
1969 Thesis data	6.0 (6)	8.1 (13)	1.4 (2)
1975He20	4.91 (15)		2.24 (10)
1975He20 (Revised)		9.00 (32)g	1.23 (5)



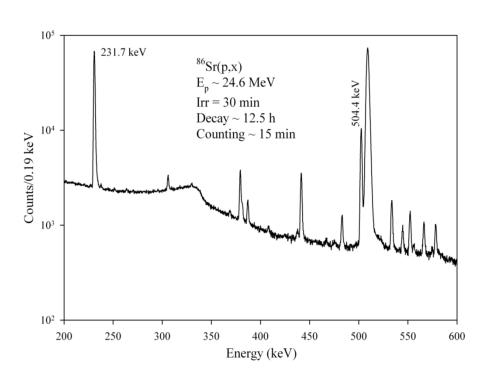
γ -ray emission probability in ⁸⁵Yg decay

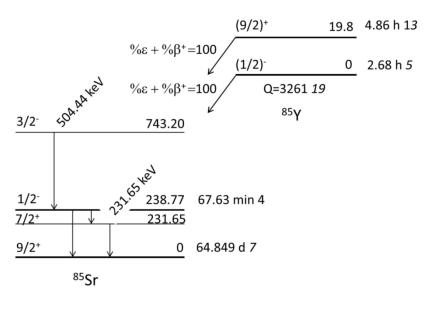
- Normalized in transient equilibrium – ⁸⁵Sr^m with ⁸⁵Yg
- Assumed time-dependent correction was done by authors

2014Si05 - NDS

⁸⁵Υ ε decay (2.68 h) 1976Li02,1975Ba49 (continued)

$$\gamma$$
(85Sr)


Iy normalization: From $I_{\gamma}(504\gamma)/I_{\gamma}(231\gamma)=0.71~5$ and $%I_{\gamma}(231\gamma)=83.9\%~4$ (see $^{85}Sr~IT~decay~dataset$).


Ε _γ †	I_{γ} ‡&	E_i (level)	J_i^{π}	\mathbf{E}_f	J_f^{π}	Mult.§	δ§	α [@]	$I_{(\gamma+ce)}$ &	Comments
(7.12 25)		238.77	1/2-	231.65	7/2+	[E3]		2.02×10 ⁷ 12	143 10	$\alpha(L)=1.66\times10^7$ 10; $\alpha(M)=3.31\times10^6$ 19; $\alpha(N)=3.17\times10^5$ 18; $\alpha(O)=63$ 4 E _{\gamma} : from level-energy difference. $I_{(\gamma+ce)}$: $I_{(\gamma+ce)}(7\gamma)=I_{(\gamma+ce)}(231\gamma)=143$ 10.
215.9 <i>4</i> 231.65 <i>7</i>	0.32 <i>3</i> 140 <i>10</i>	1152.67 231.65	3/2 ⁻ 7/2 ⁺	936.8 0.0	5/2 ⁻ 9/2 ⁺	M1+E2	-0.45 6	0.0224 12		$\alpha(K)$ =0.0196 11; $\alpha(L)$ =0.00228 14; $\alpha(M)$ =0.000383 23; $\alpha(N)$ =4.7×10 ⁻⁵ 3 I _y : it is assumed that Iy=140 10 in 1976Li02 is corrected for time dependence.

Measurements:

- At 88-Inch cyclotron, LBNL proton beam, E=27 MeV
- Enriched ⁸⁶SrCO₃ target, ⁸⁶Sr(p,2n)⁸⁵Y^{m,g}

$$I_{\gamma dc} = I_{\gamma d}/F$$

Results: γ-ray emission probability in ⁸⁵Yg decay

Ref.	<i>I</i> γp (504)	$I_{ m \gamma dc}$ (232)	%P _γ (504)
This work	100	139 (4)	60 (2)
1976Li02 (NP_A)	100	140 (10)	
2014Si05 (NDS)			60 (5)

We have confirmed the reported $I\gamma(232)$ in 1976Li02 was corrected for time dependency. Which is assumed to normalize the $^{85}Y^{g}$ decay scheme in NDS

Conclusions:

- Solved the discrepancy in the γ-ray emission probability in ¹³⁷Ce^g decay
- Our value 1.21 (3)% is in excellent agreement with the revised value of 1.23 (5)% (1975He20) for the 447-keV γ-ray emission probability
- Confirmed that the reported $I_{\gamma}(232)$ in 1976Li02 was corrected for time dependency in $^{85}Y^{g}$ decay
- In cases where the literature data are ambiguous on this issue, new experiments are needed to verify the accuracy of the γ-ray emission probabilities

Resolution of a discrepancy in the γ-ray emission probability from the beta decay of ¹³⁷Ce^g

M.S. Basunia¹, J.T. Morrell², M.S. Uddin³, A.S. Voyles^{1,2}, C.D. Nesaraja⁴, L.A. Bernstein^{1,2}, E. Browne¹, M.J. Martin⁴, and S.M. Qaim⁵

¹Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ²Department of Nuclear Engineering, UC Berkeley, Berkeley, California 94720, USA
 ³Tandem Accelerator Facilities, INST, Atomic Energy Research Establishment, Savar, Dhaka, Bangladesh
 ⁴Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
 ⁵Institut für Neurowissenschaften und Medizin, INM-5:Nuklearchemie, Forschungszentrum Jülich, D-52425 Jülich, Germany

Submitted to PRC in Sept, 2019

Thank you

