

BetaShape v2

Nuclear Data Week 2019 | X. Mougeot

- > Short review of LogFT modelling
- > The BetaShape code (v2)
 - > Beta decays, experimental shape factors
 - > Electron captures, comparison with precise measurements
 - > Output files
- > Application to radionuclide metrology
- > Ongoing developments and perspectives

Weak interaction decays in nuclear data

- Beta transition: energy spectra, mean energies, ft-values
- **Electron capture**: capture probabilities, ft-values

list

<u>ceatech</u>

LogFT

Nuclear Data Week 2019 | X. Mougeot | 4

Input data form ENSDF file

- Propagates uncertainties from input parameters
- Unc. <0.1% not given, i.e. null unc. in output results

Output results

- Beta decays: mean energies, log *ft* values
- Electron captures: log *ft* values, (K, L, M+) capture probabilities, $(P_{L_2}/P_{L_1}, P_{L_3}/P_{L_1}, P_{\varepsilon}/P_{\beta^+} \text{ and } P_K/P_{\beta^+})$ probability ratios
- Report file, updated ENSDF file

Code

- 3 036 lines in total
- One data file, 98 lines

Theoretical model is very simple:

- Analytical Fermi function (point nucleus)
- > Analytical wave functions for electrons, only at nuclear surface
- Power series approximation for low-energy beta minus particles
- Analytical correction for finite nuclear size effect
- Rose's screening (1936!) with Thomas-Fermi potential, for both beta minus and beta plus decays
- Treatment of allowed, first forbidden unique and second forbidden unique transitions

Theoretical model relies on atomic wave function parameters:

- Relativistic Hartree-Fock-Slater self-consistent approach
- Realistic Fermi-Dirac distribution for the nuclear charge density
- Neutral atoms, closed shells, no electron correlation
- > Overlap and exchange effects for K, L_1 , $L_{2,3}$ and M_1 shells
- > Tabulated parameters, impossible to consistently improve the modelling
- > Arbitrary 1% unc. added to ε/β^+ ratio in addition to unc. propagation from input parameters

BetaShape (v2)

Executables of the BetaShape program for Windows, Linux and OS X are available at http://www.lnhb.fr/rd-activities/spectrum-processing-software/

Nuclear Data Week 2019 | X. Mougeot | 8

Nuclear current can be factored out for allowed and forbidden unique transitions

$$C(W) = (2L-1)! \sum_{k=1}^{L} \lambda_k \frac{p^{2(k-1)} q^{2(L-k)}}{(2k-1)![2(L-k)+1]!}$$

$$F_0 L_0 = \frac{\alpha_{-1}^2 + \alpha_1^2}{2p^2} \qquad \lambda_k =$$

 \rightarrow Numerical solving of Dirac equation for the leptons

X. Mougeot, Phys. Rev. C 91, 055504 (2015)

Forbidden non-unique transitions calculated according to the ξ approximation

if
$$2\xi = \alpha Z/R \gg E_{max}$$

1st fnu \rightarrow allowed
applied to 2nd, 3rd, etc.

Assumptions → Corrections

- Analytical screening corrections (Rose, Bühring)
- Radiative corrections from superallowed decays

Propagation of uncertainties

Reads and writes to/from ENSDF files

Database of experimental shape factors

Relativistic electron wave functions

 $\Psi(\vec{r}) = \begin{pmatrix} S_{\kappa} f_{\kappa}(r) \chi^{\mu}_{-\kappa} \\ g_{\kappa}(r) \chi^{\mu}_{\kappa} \end{pmatrix}$ Radial
component

Spin-angular functions → spherical harmonics expansion

Electron wave function \rightarrow spherical symmetry

 $\begin{cases} \frac{\mathrm{d}f_{\kappa}}{\mathrm{d}r} = \frac{(\kappa-1)}{r} f_{\kappa} - [W-1-V(r)]g_{\kappa} \\ \frac{\mathrm{d}g_{\kappa}}{\mathrm{d}r} = [W+1-V(r)]f_{\kappa} - \frac{(\kappa+1)}{r}g_{\kappa} \end{cases}$

Dirac equation \rightarrow coupled differential equations

Power series expansion (exact solutions)

$$\begin{cases} f(r) \\ g(r) \end{cases} = \frac{(pr)^{k-1}}{(2k-1)!!} \sum_{n=0}^{\infty} {a_n \\ b_n} r^n$$

nucleus = uniformly charged sphere \rightarrow fast computation of the solutions

H. Behrens, W. Bühring, *Electron Radial Wave functions and Nuclear Beta Decay*, Oxford Science Publications (1982)

Excellent agreement with all the parameters tabulated in

H. Behrens, J. Jänecke, Landolt-Börnstein, New Series, Group I, vol. 4, Springer Verlag, Berlin (1969)

S

<u>ceatech</u>

list ^{Ceatech}

Analytical screening corrections

1

Radiative corrections

Electrons – Old correction	Electrons – New correction	Nucleus	T&H (%)	New (%)
. Sirlin, Phys. Rev. 164, 1767 (1967) I.S. Towner, J.C. Hardy, PRC 77, 025501 (2008)			1,679	1,678
W. Jaus, Phys. Lett. 40, 616 (1972)	Jaus, Phys. Lett. 40, 616 (1972) A. Czarnecki et al., PRD 70, 093006 (2004)		1,543	1,539
		¹⁸ Ne	1,506	1,508
Si	uperallowed β^+ transitions	²² Mg	1,466	1,465
% Total r	adiative correction on <i>f</i> values	²⁰ Si	1,438	1,434
2,8			1,423	1,420
		• ³⁴ Ar	1,412	1,412
2,6 Towner&Ha	erdv •	³⁸ Ca	1,414	1,410
BetaShane	v1 •	⁴² Ti	1,428	1,423
2,4 BetaShape	v1 v2	^{26m} Al	1,478	1,478
DetaShape	V2	³⁴ Cl	1,443	1,441
2,2		^{38m} K	1,440	1,437
	•	⁴² Sc	1,453	1,450
2	•	⁴⁶ V	1,445	1,442
	• •	⁵⁰ Mn	1,444	1,440
1,8		⁵⁴ Co	1,443	1,437
•	•	⁶² Ga	1,459	1,455
1,6		⁶⁶ As	1,468	1,471
••••		• ⁷⁰ Br	1,49	1,487
1,4		⁷⁴ Rb	1,50	1,499
1,2				
pratoire National 5 10 15	20 25 30 35	Z		

Examples of improved calculations

These two transitions are calculated as allowed by the LogFT program, which does not provide any beta spectrum.

list

Ceatech

²⁴¹Pu

LogFT log ft = 5.8

BetaShape v1 log ft = 5.925 (8) from calculation log ft = 3.284 (8) from exp. shape factor: $1 - 1.9582W + 0.96078W^2$ from 2011KO21. Recommended result.

Balraj Singh: IT'S NOT POSSIBLE!

Full calculation with precise atomic effects (not yet included in BetaShape v2) log ft = 5.969(8)

 \rightarrow Problem comes from exp. shape factor, because normalization was free in the extraction. A constant factor of 420 takes up a part of the strength of nuclear matrix elements.

Allowed and forbidden unique transitions can be calculated without any nuclear structure.

If transition energy $\geq 2m_e$

 \rightarrow competition with a β^+ transition

Dirac equation is solved numerically

Local power series expansion

$$\begin{cases} f(r) \\ g(r) \end{cases} = \frac{(pr)^{k-1}}{(2k-1)!!} \sum_{n=0}^{\infty} \begin{cases} a_n \\ b_n \end{cases} r^n$$

X. Mougeot, C. Bisch, Phys. Rev. A 90, 012501 (2014)

- Coulomb potential = extended nucleus
 - + screened potential
 - + exchange potential

(uniformly charged sphere)

(Coulomb influence of electrons)

ential (indistinguishability of fermions)

Reference orbital energies

Iterative procedure to reach atomic energies from relativistic DFT approach with electron correlations.

- → More precise, realistic orbital energies from H to U. Extrapolation from U to Z = 120.
- \rightarrow Fixed mass number A for each proton number Z along the stability line. Tabulation of parameters for each wave function from Z = 1 to Z = 120.

S. Kotochigova *et al.*, Phys. Rev. A 55, 191 (1997)

Corrections on capture probabilities

list

Ceatech

Overlap: spectator electrons contribute to the total decay rate. Exchange: indistinguishability of the electrons.

→ Single correction, either from Bahcall or Vatai. Generalized to every subshell. From theory point of view, Vatai's should be better.

Hole: the sudden disappearance of the captured electron modifies the atomic wave functions.

 \rightarrow Corrected for by means of first order perturbation theory.

B. Crasemann *et al.*, Phys. Rev. C 19, 1042 (1979) Shake-up: excitation to an unoccupied bound state.

Shake-off: ionization to a continuum state.

→ Single correction, following Crasemann et al. Probability to create a secondary vacancy for every subshell.

Radiative corrections: fully relativistic theory with Coulomb effects exists, but only for allowed transitions and K, L captures.

 \rightarrow For consistency of the whole modelling, Coulomb-free theory is considered for *n*s orbitals, and a mean value for others.

Overlap effect

ST

ceatech

Variation of nuclear charge: the **spectator electrons** contribute to the total decay rate.

 \rightarrow Imperfect overlap between initial and final atomic wave functions

Exchange effect

Vacancy in the K shell?

+ M₁, etc.

Two approaches for overlap and exchange corrections

J.N. Bahcall, Phys.	E. Vatai, Nucl. Phys.			
Rev. 129, 2683 (1963)	A 156, 541 (1970)			

- **Bahcall**: only K, L₁ and M₁ shells
- Vatai: up to N₁ shell; other shells taken into account for overlap
- No multiple exchange process

Generalization of the two approaches from Bahcall and Vatai

$$B_{n\kappa} = \left| \frac{b_{n\kappa}}{\beta_{n\kappa}} \right|^{2} \text{ with } \mathbf{Exchange}$$

$$b_{n\kappa} = t_{n\kappa} \left[\prod_{m \neq n} \langle (m, \kappa)' | (m, \kappa) \rangle \right] \left[\beta_{n\kappa} - \sum_{m \neq n} \beta_{m\kappa} \frac{\langle (m, \kappa)' | (n, \kappa) \rangle}{\langle (m, \kappa)' | (m, \kappa) \rangle} \right]$$
Descent and shake-off roughly included, but underestimation of some probabilities and extended by the balance of the balan

No shake-up and shake-off, but **more comprehensive** approach

overestimation of others

list

Ceatech

Nuclear Data Week 2019 | X. Mougeot | 19

Shaking effects

Each electron has only three possible final states

- **Spectator**: same original quantum numbers
- Shake-up: excitation to an unoccupied bound state
- Shake-off: ionization to a continuum state

Creation of a secondary vacancy

For a given captured electron, **sum of shaking probability for each atomic electron**

$$\lambda_{n\kappa} \longrightarrow \lambda_{n\kappa} \left(1 + \sum_{m,\kappa} P_{m\kappa} \right)$$

The **capture** process induces that the **daughter** atom is in an **excited state** \rightarrow Influence of the hole on the bound wave functions

First order perturbation theory $(\mathcal{H}_0 + \mathcal{H}')|(i,\kappa)'\rangle = (E_0 + E')|(i,\kappa)'\rangle$

Initial: parent atom

Perturbation: the electron (n, κ) is captured

$$\mathcal{H}' = \frac{\alpha}{r} - \langle (n,\kappa) | \frac{\alpha}{|\vec{r_{n\kappa}} - \vec{r}|} | (n,\kappa) \rangle \longrightarrow |(i,\kappa)'\rangle = |(i,\kappa)\rangle - \sum_{j \neq i} \frac{\langle (j,\kappa) | \mathcal{H}' | (i,\kappa) \rangle}{W_j - W_i} | (j,\kappa) \rangle$$

The correction of the hole effect is thus only applied through the **asymmetric overlaps**

$$\langle (j,\kappa)'|(i,\kappa)\rangle = \frac{\langle (j,\kappa)|\mathcal{H}'|(i,\kappa)\rangle}{W_j - W_i}$$

with

$$\langle (j,\kappa) | \mathcal{H}' | (i,\kappa) \rangle = \int_0^\infty (\alpha r) \big[f_{j\kappa}(r) f_{i\kappa}(r) + g_{j\kappa}(r) g_{i\kappa}(r) \big] \times$$

$$\left\{1-\int_0^r x^2 [g_{n\kappa}^2(x)+f_{n\kappa}^2(x)]\mathrm{d}x-r\int_r^\infty x [g_{n\kappa}^2(x)+f_{n\kappa}^2(x)]\,\mathrm{d}x\right\}\mathrm{d}r$$

Radiative correction

For transition energies $< 2m_e$, internal Bremsstrahlung process can occur.

- → Neutrino energy shared with the emitted photon.
- \rightarrow Total emission probability of ~ 10⁻⁵ but probability ratios are considered.

For transition energies $> 2m_e$, radiative corrections for β^+ transition must also be taken into account.

- \rightarrow Correction of ~ 1%.
- Coulomb-free theory is very simple but not very accurate.
- Fully relativistic theory with Coulomb effects exists for allowed transitions and K, L captures.

For consistency of the whole modelling, Coulomb-free theory is considered.

Allowed transitions

- Vatai's approach leads to more accurate results than Bahcall's approach, as expected from a theory point of view.
- All predictions are consistent with selected measurements.

list Forbidden unique transitions Clatech New high-precision measurement of ¹³⁸La Q-values $Q_{e} = 1742(3) \text{ keV}$ AME2016: • PRC 100 (2019) 014308: **Q**_e = **1748.41(34) keV** $\Delta Q_{\epsilon} < 0.4\%$ \rightarrow Exp. L/K = 0.391 (3) Δ (L/K)_{calc.}~3% Calc. L/K = 0.3913 (26)

General features

Code

- 7 programs, 9 C++ classes, 26 955 lines in total
- 6 external files, 6 300 lines in total

Beta decays

- Single and total β^+/β^- spectra
- Corresponding v_e/\bar{v}_e spectra
- Mean energies, log ft values
- Experimental shape factor, if any in the database (131 transitions present)

Electron captures

- Capture probabilities and their ratios, with uncertainties, for all subshells
- Account of energetically hindered captures (e.g. K capture in ²⁰⁵Pb)
- Splitting of the branch between capture and beta plus transitions
- Log ft values

- Bugs fixing and code structure.
- Uncertainty treatment: if no unc. in input file, null unc. considered (instead of 60% from flat distribution).
- All physical constants from CODATA 2018, names of elements up to Z=118 according to IUPAC recommendations.
- Q-values can be updated on-the-fly with AME2016 evaluation.
- Radiative corrections from superallowed beta decay studies.
- Experimental shape factors: ¹⁴O, ³⁶Cl, ¹³⁸La. Continuation record in ENSDF file.
- Fixing a constant energy step for the calculated spectra now possible.
- Calculation of electron capture transitions, information for each subshell given. ENSDF file is updated.
- Splitting of the branch between capture and beta plus can be updated or fixed from input data.

Single transition file: beta decay

1								
2 3 4 5 6 7 7 8	BetaShape Analytical version: 1.0 (24/06/2016) Author: X. <u>Mougeot (xavier.mougeot@cea.fr)</u> CEA, LIST, <u>Laboratoire</u> National Henri Becquerel (LNHB), <u>Gif-gur</u> -Yvette F-91191, France Please cite: X. <u>Mougeot</u> , Physical Review C 91, 055504; Erratum Phys. Rev. C 92, 059902 (2015)							
Transition9parameters11and options13for calculation1610161016	Parent nuc Calculatic Bühring's End-point	cleus: 19-K-40 [4 on of the 3rd for screening correc energy: 1311.07	I-] g.s> Da bidden unique tr tion is consider (11) keV Ene	ughter nucleus: 2 ansition from the ed. rgy step: 4 keV	0-Ca-40 [0+] g.s. beta - decay of Intensity: 0.8	K-40 921 (17)		
Experimental1/shape factor2021	An experin Energy ran From [1965	mental shape fact nge of the measur SLE15] H. Leutz,	or has been foun rement: 100 - 110 G. Schulz, H. We	d: 1.05*q^6 + 6.3 0 keV In dat nninger, Z. Physi	*q^4*p^2 + 6.25*q abase, transition & 187, 151 (1965)	^2*p^4 + 0.95*p^6 ₁ #21		
Mean energies, log ft values, analysis parameters	Input mean energy: 583.982 (48) keV Mean energy from the calculated spectrum: 583.639 (48) keV Mean energy from the experimental shape factor: 583.982 (48) keV Input log ft value: 20.58 Log ft value from the calculated spectrum: log ft 20.5938 (13) with components: log f 3.94802 (33) and log partial T1/2 16.6457 (13) Log ft value from the experimental shape factor: log ft 20.5793 (13) with component: log f 3.93358 (33) Agreement of the experimental and calculated spectra in [100,1100] keV: 98.77 % Corresponding disagreement: 1.23 % Variation of the mean energies: -5.88e-02 %							
33 34 35 36 37 38 39 spectra 40 41 42	E (keV) 0 4 8 12 16 20 24 28	dN/dE calc. 4.02693e-04 4.04766e-04 4.08385e-04 4.13549e-04 4.19883e-04 4.26884e-04 4.34246e-04 4.41790e-04	UDC. 3.54693e-08 3.59052e-08 3.64707e-08 3.71660e-08 3.79692e-08 3.88382e-08 3.97463e-08 4.06777e-08	dN/dE exp. 4.33819e-04 4.35849e-04 4.39534e-04 4.44873e-04 4.51190e-04 4.58040e-04 4.65166e-04 4.72418e-04	ung. 3.72568e-08 3.75815e-08 3.80543e-08 3.86750e-08 3.93863e-08 4.01500e-08 4.09440e-08 4.17552e-08			
	:	•		•				

list

Ceatech

list ^{Ceatech}

Single transition file: electron capture

Ratios of relative capture probabilities	Capture-to-positron ratios	Capture probabilities
PL1/PK = 0.1073 (7) PL2/PK = 2.472E-4 (16) PL3/PK = 6.973E-4 (31) PM1/PK = 0.01419 (18) PM2/PK = 2.562E-5 (15) PM3/PK = 5.72E-5 (7) L/K = 0.1083 (7) M/K = 0.01427 (18)	K/b+ = 188.1 (26) $L1/b+ = 20.19 (15)$ $L2/b+ = 0.0465 (9)$ $L3/b+ = 0.1311 (24)$ $M1/b+ = 2.669 (8)$ $M2/b+ = 0.004818 (38)$ $M3/b+ = 0.010749 (37)$ $K/b+ = 188.1 (26)$ $L/b+ = 20.37 (15)$ $M/b+ = 2.684 (8)$	PK = 0.89 (44) $PL1 = 0.095 (47)$ $PL2 = 2.2E-4 (11)$ $PL3 = 6.2E-4 (31)$ $PM1 = 0.013 (6)$ $PM2 = 2.3E-5 (11)$ $PM3 = 5.1E-5 (25)$ $K = 0.89 (44)$ $L = 0.096 (48)$ $M = 0.013 (6)$
Relative capture probabilities	EC/b+ = 211.1 (28)	
PK = 0.8908 (7) $PL1 = 0.0956 (5)$ $PL2 = 2.202E-4 (16)$ $PL3 = 6.211E-4 (32)$ $PM1 = 0.01264 (15)$ $PM2 = 2.282E-5 (12)$	ormation for subshells or shells	Input log ft value (ec & beta +): 21.35 Log ft value (ec) = 21.33 (22) with log f = 2.033 (5) and log partial T1/2 = 19.30 (22)
PM2 = 2.282E-5 (12) PM3 = 5.09E-5 (6)		
<pre>K = 0.8908 (7) L = 0.0965 (5) M = 0.01271 (15) Input data: Iec tot. Iec = 0.20 (10 Ib+ = 9.5E-4</pre>	nch between capture and beta p = 0.20 (10) % <u>lec</u> = 0.2 0) % (48) %	olus decays 20 (10) % Ib+ = 10.0E-4 (12) %


```
130CS P 0.0 1+
                      29.21 M 4 2979 8 - PARENT
130XE N 0.039 4 1.0 0.984 1.0163
                                                                – NORMALIZATION
130XE PN
                                                              3 - PRODUCTION NORMALIZATION
130XE L 0.0 0+
                                                                 - LEVEL
***** BR and NB from N record *****
From calculation
K = 0.4706 (30) | L = 0.06182 (39) | M = 0.01340 (10) | N = 0.003458 (47) | O = 5.73E-4 (9)
K/b+ = 1.045 (19) | L/b+ = 0.1373 (24) | M/b+ = 0.02977 (40) | N/b+ = 0.00768 (15) | O/b+ = 0.001273 (29)
Branch splitting: Iec 52.0 (5) % and Ib+ 42.5 (5) %
EC component of log ft 5.096 (6)
* log ft
130XE E 43.0 5 51.5 5 5.073 6 94.5 6 - OLD CARD
130XE E 42.5 552.0 55.096 6
                                                94.5 7 - NEW CARD

    * Probabilities

130XES E EAV=879 4 $CK=0.466 3 $CL=0.0623 4 $CM+=0.01692 10
                                                                - OLD CARD
130XES E EAV= $CK=0.4706 30$CL=0.06182 39$CM+=0.01743 11
                                                                - NEW CARD
```


Additional beta continuation record

Experimental shape factor is given as continuation record.

list

ceatech

Application to radionuclide metrology

Nuclear Data Week 2019 | X. Mougeot | 32

Counting efficiency in Liquid Scintillation Counting directly depends on beta spectrum

• System with 2 PMTs: CIEMAT/NIST (tracer)

$$\boldsymbol{\varepsilon} = \int_{0}^{E_{\text{max}}} S(\boldsymbol{E}) (1 - \boldsymbol{e}^{-\eta})^2 d\boldsymbol{E} \qquad \qquad \eta = \frac{\nu}{n} \int_{0}^{E} \frac{A dE}{1 + kB \frac{dE}{dx}}$$

• System with 3 PMTs: TDCR (Triple to Double Coincidence Ratio)

$$TDCR = \frac{R_T}{R_D} = \frac{\int_{0}^{E_{\text{max}}} S(E) (1 - e^{-\eta})^3 dE}{\int_{0}^{E_{\text{max}}} S(E) ((3(1 - e^{-\eta})^2 - 2(1 - e^{-\eta})^3)) dE}$$

List ⁶³Ni

Nuclear Data Week 2019 | X. Mougeot | 34

Preliminary results for ¹⁴C, ³²Si/³²P, ⁵⁹Fe and ⁹⁹Tc

 \rightarrow Identical conclusion

Capture probabilities for ⁵⁵Fe

 \rightarrow Strong impact on primary activity determination

November 7th-8th, 2019

→ Ongoing discussion at BIPM to adopt BetaShape results as the unique reference for future international intercomparisons

Ongoing developments and perspectives

Nuclear Data Week 2019 | X. Mougeot | 37

Next developments in BetaShape

- Inclusion of precise screening effect using a hybrid method.
- Inclusion of precise exchange effect using tabulated exchange factors for all Z.

Ongoing work

- > New high-precision measurements to analyze: ^{14}C , ^{99}Tc , ^{151}Sm .
- Extension of theoretical formalism to forbidden beta transitions.
- High-precision atomic wave functions: relativistic DFT code in development within the European project MetroMMC with IPCMS, Strasbourg, France.

Nuclear structure

Calculation of theoretical shape factor

- For both beta decay and electron capture.
- For transition of every nature: allowed, forbidden unique and non-unique.
- \succ Impulse approximation, spherical symmetry, single particle matrix elements.
- Very simple nuclear modelling: harmonic oscillators.

Future

- Nuclear component: nuclear deformation, pairing correlations and configuration mixing using already existing codes. Looking for collaborations.
- Uncertainties: estimate of theoretical components and propagation using a Monte Carlo method.

Theoretical shape factor

$$C(W_e) = \sum_{Kk_ek_{\nu}} \lambda_{k_e} \left[M_K^2(k_e, k_{\nu}) + m_K^2(k_e, k_{\nu}) - \frac{2\mu_{k_e}\gamma_{k_e}}{k_eW_e} M_K(k_e, k_{\nu}) m_K(k_e, k_{\nu}) \right]$$

Multipole expansion of hadron and lepton currents. Calculation of shape factors, halflives, branching ratios, log *ft* values.

Fermi theory

- > Vertex of the weak interaction is assumed to be pointlike. No propagation of W^{\pm} boson.
- > Effective coupling constant G_F .

Impulse approximation

- The nucleon is assumed to feel only the weak interaction.
- > Other nucleons are spectators.

Spherical symmetry. Single particle matrix elements. Multipole moments are selected according to the required precision. Two simple nuclear models: **non-relativistic and relativistic harmonic oscillators**.

²⁰⁹Pb: first forbidden non-unique

 $^{209}_{82}Pb_{127} \rightarrow ^{209}_{83}Bi_{126}$ $9/2^+ \to 9/2^ |\nu, 2g_{9/2}\rangle \rightarrow |\pi, 1h_{9/2}\rangle$ $E_0 = 644.0(11) \text{ keV}$ Evaluated from exp. t_{1/2} = 3.234(7) h Non-rel. Harm. Osc. t_{1/2} = 2.874 h Rel. Harm. Osc. t_{1/2} = 252.2 h

list

Ceatech

Beta decay to and from an even-even ground state

Many particle matrix elements in the j - j coupling scheme are related to single particle matrix elements by a coefficient which depends on *K*:

 $\mathcal{M}_{KLs}^{\text{many part.}}(q^2) = \mathcal{C}(K) \times \mathcal{M}_{KLs}^{\text{sing. part.}}(q^2)$

A sum has to be performed over different configurations, weighted by C(K). This coefficient depends on fractional parentage coefficients.

An even-even nucleus can be considered as the vacuum of particle-hole excitations used to describe adjacent nuclei.

The ground state of such reference nucleus is always 0⁺. A transition to or from this state is therefore constrained to a single *K* value, the spectrum shape being only normalized by $C^{2}(K)$.

From: $C(K) = \sqrt{2K_{\min} + 1}$

To: $C(K) = (-1)^{j_{i,\text{part.}}-j_{i,\text{hole}}+K_{\min}}\sqrt{2K_{\min}+1}$

St

⁴⁰K: third forbidden unique

list

Ceatech

Conclusion

Nuclear Data Week 2019 | X. Mougeot | 44

BetaShape v2

- ✓ Available at <u>http://www.lnhb.fr/rd-activities/spectrum-processing-software/</u>
- Executables for Windows and Linux, MacOS still pending.
- Now able to treat beta and capture decays.
- Provision of improved information needed for nuclear decay data evaluations.
- Provision of additional detailed information needed for various applications.

\rightarrow Feedback on the results, comments, suggestions and bug reports are highly expected

ENSDF evaluations

BetaShape v2 can improve nuclear decay data if used instead of LogFT. This code will be maintained and regularly improved.

 \rightarrow Would you like to adopt it for the future evaluations?

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019