

Member of the US Nuclear Data Program

Argonne Nuclear Data Program

Nuclear Data Compilations & Evaluations

- Inuclear structure compilations and evaluations ENSDF & XUNDL
- ✓ evaluation of atomic masses and nuclear properties AME & NuBase
- ✓ decay data evaluations in support of IAEA-led projects & other horizontal evaluations (nuclear isomers, B(E3), ND for Monitoring Applications)

Complementary ND Research Activities

 intersections between basic and applied nuclear physics & astrophysicsvia collaborative agreements with a little or no cost to USNDP
 contributions to DOE/NP FOA's - 2 funded at the FY17 call

2019 USNDP Meeting, Nov. 7 - 8, 2019, BNL

Office of

Science

Evaluations & Compilations - FY19

ENSDF

- A=177 was completed and published in NDS
- A=205 was completed and submitted to NNDC
- started working on A=203
- reviewed of A=100 (completed) and 190 (ongoing)

XUNDL

- compiled what we were asked to do not much a few papers from the IAEA-ICTP workshop ...
 in the past compiled RIKEN-produced papers with Yuichi Ichikawa (RIKEN) no requests for compilations during FY19
 - discontinued the collaboration

AME & NUBASE

continued compilation & evaluation activities

IAEA-NDS collaborations

 IAEA-ICTP workshop; NSDD;TM on Antineutrino spectra; TM on ENSDF codes (benchmarking & code development); TM on ND for monitoring applications

Nuclear Data Research Activities

intersections between the basic and applied NP & astrophysics
 complements and benefits the evaluation activities
 sought after collaborator with little or no cost to USNDP

- at ANL (ATLAS & CARIBU) nuclei far from stability, spectroscopy of heavy and super-heavy nuclei, K-isomers, beta-decay spectroscopy & mass measurements in the FP region; *decay spectroscopy* of actinide nuclei and nuclei of importance to applications of medical isotopes and metrology
 - ✓ present: CARIBU properties of neutron-rich nuclei (nuclear structure & masses, astrophysics & applications); FOA's funded projects
 - ✓ **future:** nuCARIBU & N=126 factory

at MSU (Coulex & decay spectroscopy) & RIKEN (decay spectroscopy) properties of neutron-rich nuclei far from the line of stability

deformed light rare-earth region

¹⁶⁰ Tb 95	¹⁶¹ 65 Tb 96	¹⁶² Tb 97	¹⁶³ Tb 98	¹⁶⁴ Tb 99	¹⁶⁵ ₆₅ Tb 100	¹⁶⁶ ₆₅ Tb 101
72.3 d 3- Δ=-67835.5 (1.8) β-=100%	6.89 d 3/2+ Δ=-67460.8 (1.8) β-=100%	7.60 m (1-) Δ=-65670 (40) β-=100%	19.5 m 3/2+ Δ=-64595 (4) β-=100%	3.0 m (5+) ∆=-62080 (100) β-=100%	2.11 m 3/2+# Δ=-60570# (200#) β-=100%	25.1 s (2-) Δ=-57880 (70) β-=100%
¹⁵⁹ Gd 95	$^{160}_{64}$ GC ₉₆	¹⁶¹ ₆₄ Gd 97	¹⁶² 64 Gd ₉₈	¹⁶³ 64 Gd 99	¹⁶⁴ 64 Gd 100	¹⁶⁵ ₆₄ Gd ₁₀₁
18.479 h 3/2- Δ=-68560.8 (1.6) β-=100%	Stable >31Ey 0+ Δ=-67940.9 (1.7) Abndnc=21.86% (Γ) 2β- ?	3.646 m 5/2- Δ=-65505.0 (2.0) β-=100%	8.4 Δ=-64 β-=1.30	68 s 7/2+# Δ=−61314 (8) β−=100%	45 s 0+ Δ=-59770# (200#) β-=100%	10.3 s 1/2-# Δ=-56490# (300#) β-=100%
¹⁵⁸ Eu ₉₅	¹⁵⁹ Eu ₉₆	Eu 97	¹⁶¹ Eu ₉₈	¹⁶² Eu ₉₉	¹⁶³ Eu 100	¹⁶⁴ Eu ₁₀₁
45.9 m (1-) ∆=-67255 (10) β-=100%	18.1 m 5/2+ Δ=-66043 (4) β-=100%	38 s (1, +#) Δ=-63480 (10) β-=100%	26 s 5/2+# Δ=-61792 (10) β-=100%	10.6 s Δ=-58690 (60) β-=100%	7.7 s 5/2+# ∆=-56640 (70) β-=100%	4.2 s Δ=-53330# (210#) β-=100%

PHYSICAL REVIEW LETTERS 120, 182502 (2018)

Masses and β -Decay Spectroscopy of Neutron-Rich Odd-Odd ^{160,162}Eu Nuclei: Evidence for a Subshell Gap with Large Deformation at N = 98

D. J. Hartley,¹ F. G. Kondev,² R. Orford,^{2,3} J. A. Clark,^{2,4} G. Savard,^{2,5} A. D. Ayangeakaa,^{2,*} S. Bottoni,^{2,†} F. Buchinger,³ M. T. Burkey,^{2,5} M. P. Carpenter,² P. Copp,^{2,6} D. A. Gorelov,^{2,4} K. Hicks,¹ C. R. Hoffman,² C. Hu,⁷ R. V. F. Janssens,^{2,‡} J. W. Klimes,² T. Lauritsen,² J. Sethi,^{2,8} D. Seweryniak,² K. S. Sharma,⁹ H. Zhang,⁷ S. Zhu,² and Y. Zhu⁷

- combination of mass spectrometry (PI-ICR)
 & decay spectroscopy
- beta-decaying isomers in ¹⁶⁰Eu & ¹⁶²Eu changes in the single-particle structures
- discrepancies with RIKEN (decay) & Jyvaskyla (masses - confirmed our results)

π5/2[413] v7/2[633]

Contributions to FOA's funded projects

Objective

Significantly improve Nuclear Data in the Fission Product region - cross-cutting overlap with the main ND stakeholders **DOE-SC/NP** (Nuclear Structure & Astrophysics) & **DOE-NNSA/NA-22** (applications)

Improving the Nuclear Data on Fission Product Decays at CARIBU (PI: G. Savard) 5 years project

collaboration with LLNL - \$1M from DOE/SC/NP to ANL and \$1M from NNSA/ NA-22 to LLNL

 Novel Approach for Improving Antineutrino Spectra Predictions for Nonproliferation Applications (PI: F.G. Kondev)
 3 years project - \$375K from DOE/SC/NP and \$405K from NNSA/NA-22
 collaborations with LSU, WUSL & USNA & others via IAEA-NDS coordination

Gammasphere decay station

Advantages

- discrete & calorimetry γ-ray spectroscopy techniques within a single device
- high granularity & resolving power ($\Delta E\gamma = 2 \text{ keV}$, P/T~60% and $\epsilon_{\gamma} \sim 85\%$) ability to resolve week γ -ray cascades (10⁻⁵-10⁻⁶%)
- complete decay schemes angular correlations for transition multipolarities & Jπ assignments - end game in nuclear spectroscopy

HEART - HExagonal ARray for Triggering

 ✓ 6 EJ-204 plastic scint. & 12 SiPM
 ✓ ε_β~75% from β-γ singles & coin.

 powerful γ-γ-β-t coincidence device

^{146g,m}La - masses & half-lives

^{146g,m}La - Gammasphere decay station

- resolved gs and isomer decays
- new levels and transitions
- new $J\pi$ and configurations
- new nuclear structure interpretation
 - deformed shell model

Future (FY19 and beyond) Plans

- Continue contributing to XUNDL & ENSDF top priority closer connections with ATLAS & FRIB user communities
- Continue AME & NuBase collaboration activities
 maintain the currency (5-6 yrs cycle) and quality
- Continue topical collaborations with IAEA-NDS, other USNDP groups & wide nuclear physics community - B(E3) evaluation update (with T. Kibedi, ANU)
- Continue research activities with emphasis on nuclear structure physics and astrophysics, and their intersection with the applied nuclear physics
 - ATLAS & CARIBU (nuCARIBU): nuclear structure, masses & astrophysics, with emphasis on properties of neutron-rich nuclei in the deformed, light rare-earth region (A~160)
 - N=126 factory: the heavy region south of ²⁰⁸Pb nicely overlaps with the ND evaluation responsibilities
 - nuCARIBU: contributions to FOA's and other interagency ND projects
 - NSCL (FRIB), RIKEN & IMP (HIAF) nuclear structure, masses & astrophysics

Publications & Invited talks - FY19

Publications in refereed journals: 17
Invited talks: 11

Personnel & Effort - FY19 & FY20

base ND program

 1 head (staff) - 0.85 FTE SC/NP/ND
 0.15 FTE (FOA funding from NNSA/NA-22 & SC/NP)
 will expire in FY20

 ND FOAs

✓ 2 heads (post-docs) - one funded through FY20, the other through FY22