

GOSIA Results as ENSDF Data

Adam Hayes Nuclear Data Week 2019

What is Gosia?

h

- Semi-classical, coupled-channels Coulomb excitation simulation and analysis code.
- Developed in 1980 by Czosnyka, Cline, Wu at Rochester.
- Some concepts from 1978 Winther, deBoer's COULEX & Rochester de-excitation code CEGRY.
- Maintained by Czosnyka 1980–2006.
- Gosia Steering Committee (2008): Cline (Rochester), Gaffney (CERN), Hayes (BNL), Napiorkowski (Warsaw), Warr (Cologne), Zielińska (Warsaw)
- Contributions: Hasselgren (Uppsala), Hayes, Ibbotson (Rochester), Kavka (Uppsala/Rochester), Kotlinski (Warsaw/Rochester), Srebrny (Warsaw), Vogt (Munchen/Rochester)
- http://www.pas.rochester.edu/~cline/Gosia/index.html

Semi-classical

- Classical collision trajectory.
- Quantum-mechanical excitation & decay.
- Fully-quantal perturbation calculation not feasible for multi-step Coulex—calculated population of high-lying states sensitive to $\sim 30^{\text{th}}$ order perturbation.
- Appropriate for "safe" Coulex—about <80% Coulomb barrier.
- Somewhat higher for heavy ions if small impact parameter scattering excluded. 0
- Sommerfeld parameter: η

 $\eta \gg 1 \rightarrow wave packet much smaller than interaction region of trajectory.$

$$h = \frac{a2\pi}{2\lambda}$$

Semi-classical Time-Evolution

Typical Applications

- Predominantly E2 & E3 matrix elements from excitation
- M1, E1... from decay
- Measure B(E2) and/or Q_s in \sim two-state system
- Many electric and magnetic matrix elements in strongly-collective system

Strongly-deformed systems

6

Collective Rotor: Intrinsic vs. Individual M.E.

Ground State Band

A.B. Hayes

7

E2 Matrix Elements of Collective Bands

- Requires relative yield only.
- GSB is rigid rotor to good approximation.
- 1) Measure $Q_{\rm o}$ assuming rigid rotor.
- 2) Fit <I_i+2||E2||I_i> for I^{\pi}>6^+ where observed yield is sensitive to $Q_{o_{\cdot}}$
- 3) In reality, some iteration with fits to $K^{\pi}=2^+,4^+$ required.

8

Gamma Yield Sensitivity to Quadrupole Moment

A.B. Hayes

- Measured Q_o sensitive to rotational band *relative* Yy gamma yield intensity
- No external normalization
- Q_o typically sensitive to_{0.01} ≤5% level

Normalized Gamma-ray Intensity vs. Initial Spin

Example: Quadrupole moment of collective nucleus ¹⁷⁸Hf

¹Hayes et al., Phys. Rev. C **75**, 034308 (2007), Thesis (2005, unpublished) ²From B(E2;2⁺ \rightarrow 0⁺) = 159(5) W.u. E. Brown, Nuclear Data Sheet **54**, 199 (1988)

Citing R.M. Ronningen et al., Phys. Rev. C 15, 1671 (1977)

10

Collective Rotor: Intrinsic vs. Individual M.E.

The intrinsic matrix elements $\langle K_f \mid \mathcal{M}\lambda \mid K_i \rangle = m_0 + \Delta \vec{I}^2 m_1$					
m	ν		-5% error	Comment	
$\langle 2^+ \mid E2 \mid 0^+ \rangle$	0	0.266(12) eb	-0.00347(15) eb	$^{a}m = 0.252(11)$	
$\langle 4^+ \mid E2 \mid 2^+ \rangle$	0	$0.447(19) { m \ eb}$			
$\langle 4^+ \mid E2 \mid 0^+ \rangle$	2	$9.1 \times 10^{-4} \text{ eb}$	$-1.47 \times 10^{-5} \text{ eb}$	$\pm 6\%$	
$\left< 4^+ \mid M1 \mid 0^+ \right>$	3	$6.3 imes 10^{-5}\ \mu_{ m N}$	$-9.5 imes10^{-7}~\mu_{ m N}$	$\pm 30\%$	
$\langle 6^+ \mid E2 \mid 4^+ \rangle$	0	0.094(3) eb			
$\langle 6^+ \mid E2 \mid 2^+ \rangle$	2	0.00116(10) eb			
$\langle 6^+ \mid E2 \mid 0^+ \rangle$	4	$1.57\times 10^{-6}~{\rm eb}$	$-2.10 \times^{-8}$ eb	$\pm 3.5\%$	
$ig \langle 6^+ \mid M2 \mid 8^- angle$	0	$0.102(9) \ \mu_{ m N} { m b}^{1/2}$			
$\langle 8^- \mid E3 \mid 2^+ \rangle$	3	$0.36 \ _{-0.07}^{+0} \ \mathrm{eb}^{3/2}$		^b Alaga rule	
$\langle 8^{-} \mid E3 \mid 0^{+} angle$	5	$0.37 \stackrel{+0.07}{_{-0.01}} \mathrm{eb}^{3/2}$		^b Alaga rule	

Hayes et al., Phys. Rev. C 75, 034308 (2007)

11

Collective Rotor: Intrinsic vs. Individual M.E.

Weaker B(E2), several-state problems

1.3 NNDC National Nuclear Data Center

⁷²Ge Coulex

Ayangeakaa et al., PLB 754, 254 (2016)

⁷²Ge Coulex

Results very similar to previous measurements

• What is a reasonable expectation of the errors?

Reduced *E*2 matrix elements for transitions of ⁷²Ge, deduced from the present work, in comparison with previous measurements.

ous	$I_i^{\pi} ightarrow I_f^{\pi}$	$\langle I_i \mathcal{M}(E2) \Big $	$I_f \rangle$ (eb)	
		This work	Ref. [34]	Refs. [40,41]
nable	$0^+_1 \rightarrow 2^+_1$	0.457(4)	0.46(1)	0.457(7)
ho	$2^+_1 \rightarrow 4^+_1$	0.90(2)	0.89(4)	0.76(4)
	$4^+_1 \rightarrow 6^+_1$	$1.11\substack{+0.04 \\ -0.05}$	1.2(3)	
	$6^+_1 \rightarrow 8^+_1$	$1.1^{+0.2}_{-1.6}$		
	$2^+_1 \rightarrow 2^+_1$	$-0.16\substack{+0.07\\-0.02}$	$-0.16\substack{+0.10\\-0.07}$	-0.17(8)
	$4^+_1 \rightarrow 4^+_1$	$-0.14\substack{+0.09\\-0.04}$	-0.01(1)	
	$6^+_1 \rightarrow 6^+_1$	$-0.20\substack{+0.08\\-0.25}$	-0.1(5)	
	$2^+_1 \rightarrow 0^+_2$	$0.35\substack{+0.01 \\ -0.02}$	0.36(4)	0.45(2)
	$4^+_1 \rightarrow 2^+_2$	$-0.06\substack{+0.03\\-0.04}$	-0.08(5)	
	$6^+_1 \rightarrow 4^+_2$	$0.28\substack{+0.10 \\ -0.05}$	< 0.4	

Ayangeakaa et al., PLB 754, 254 (2016)

15

GONA

Aside: RACHEL UI for Gosia

- "Semi-GUI"
- Developed in 2005, updates in progress for Python3, Qt...
- Simulation
- Experiment planning
- Design experiments for analysis
- Data analysis
- Plots of results

16

• Run in RACHEL / generate input files for GOSIA

Simulation: <u>Statistical (only)</u> Error with ~5% Error in Yields

Simulation: <u>Statistical (only)</u> Error with ~5% Error in Yields

Simulation: Statistical (only) **Error with ~5% Error in Yields**

- 1 scattering angle partition \rightarrow no sensitivity to cross section vs. impact parameter
- Ground sequence only
- 5% error bars in the simulated data
- No random scatter in data→ no conflicts
- NOTE: strongly deformed case would have no sensitivity to $2 \rightarrow 0$

Ayangeakaa et al., PLB 754, 254 (2016)

Simulation: <u>Statistical (only)</u> Error with ~5% Error in Yields

Simulation: <u>Statistical (only)</u> Error with ~5% Error in Yields

(Approximately) Two-state Problems

22 National Nuclear Data Center

Reorientation Effects

- Coulomb excitation of ⁶⁰Ni beam by ¹⁶O beam at safe energy of 30MeV
- Predicted population of 2⁺₁ excited state
- Known B(E2;2⁺₁→ 0⁺₁) = 13 W.u.

• Constructive / destructive interference

23

A.B. Hayes

 $Q_{2+} = \langle 2^+_1 || E2 || 2^+_1 \rangle$

0.4

Reorientation Effects: Coulomb-Nuclear Interference

Population $P_{exp}/P_{Q=0}$ of 2⁺ state vs. scattering angle (spectrograph) Cline et al., Nucl Phys A 133, 445 (1969)

Reorientation Effects: Systematic Error

Population $P_{exp}/P_{Q=0}$ of 2⁺ state vs. scattering angle (spectrograph) Cline et al., Nucl Phys A 133, 445 (1969)

- Requires $E_{beam} \leq 30 \text{ MeV}$
- Equivalently, surface separation $^{1.2}$ of r=1.25fm ($A_t^{1/3} + A_p^{1/3}$) \geq 5 fm 1.0
- Coulex is not "safe" for high energy by limiting scattering angle!
- Static moment is the first thing to go.

25

Reorientation Effects: Systematic Error

Population $P_{exp}/P_{Q=0}$ of 2⁺ state vs. scattering angle (spectrograph) Cline et al., Nucl Phys A 133, 445 (1969)

- E_{beam} ≤30 MeV
- $B(E2;0^+\rightarrow 2^+) = 0.0917(18) e^2b^2$
- Q₂₊ = 0.00(8) eb

Semi-classical

Maximum safe bombarding energy per nucleon as a function of target Z. (Gosia manual)

27

Gosia2

- ~1 strongly populated state; can't self-normalize
- Normalization to Rutherford is difficult experimentally (as opposed to older spectrograph data). N = b
- Make use of mutual target / projectile excitation.
- Deduce transition probability (usually B[E2]) from known transition probability in collision partner.

→ Independent measurement of quantity of interest, but does require input of previous measurements for collision partner.

• The static moment and B(E2) both affect population. Accuracy and realistic uncertainty require correlated error calculation.

 $\frac{N_p}{N_t} = \frac{b_p \epsilon_\gamma(E_p) \sigma_p}{b_t \epsilon_\gamma(E_t) \sigma_t}$

Gosia2

29

⁷⁰Se: Oblate or Prolate?

- Hurst et al.: ⁷⁰Se on ¹⁰⁴Pd @ 206MeV (>7fm separation)
 - → <2% population of states other than 2^+_1
- Gosia2: norm proj to targ γ-yield
- Fit B(E2; $0^+ \rightarrow 2^+_1$), $<2^+_1$ ||E2|| $2^+_1>$
- Requires accurate data for collision partner ¹⁰⁴Pd
 - Luontama et al. ¹⁰⁴Pd (p,2n), (p,p'), 5 Coulex (1986)
- Consistency with $T_{1/2}$ meas requires $<2^{+}_{1}||E2||2^{+}_{1}>$ less than -0.5eb
 - → consistent with **prolate** deformation

• Note: Common mistake is to fit B(E2) without including correlations with $<2^{+}_{1}||E2||2^{+}_{1}>$ in error calculation.

A.M. Hurst *et al*., PRL 98, 072501 (2007).

A.B. Hayes

30

Validation of the Method in ⁷⁰Se Experiment Using ⁷⁴Se

- Measured gamma yields for Coulex of ⁷⁴Se on ¹⁰⁴Pd
- Combined with <2+||E2||2+> = -0.36(7) eb (19% error) from Lecomte PRC 18, 2801 (1978).
- Adopted B(E2) = $0.387(8) e^2b^2$ (2% err)
- Hurst et al. obtained B(E2;0⁺ \rightarrow 2⁺) = 0.36(2)e²b² (5.5% err)

A.M. Hurst et al., PRL 98, 072501 (2007).

31

Conclusions

- Very precise measurements are possible using Coulex and GOSIA
- Partitioning of data is very important (i.e. scattering angle)
- Collective strength / many populated states → relative gamma yields give absolute measurements
- Two-state problems require
 - Normalization to collision partner yields
 - Known B(E2), <2+||E2||2+> of collision partner
- Other problems lie somewhere in the middle
- Safe Coulex usually better than high statistics
- Inverse kinematics—don't get me started...
- Include all matrix elements in correlated error calculations
- Plan and simulate analysis before submitting proposals!

32

Terminology

Yield	Gamma-ray intensity following Coulex
EM multipole operator matrix element	$< I_s M_s M(\lambda, \mu) I_f M_f > = (-1)^{I_s - M_s} \begin{pmatrix} I_s & \lambda & I_f \\ -M_s & \mu & M_f \end{pmatrix} < I_s M(\lambda) I_f > $
Reduced matrix element	
Quadrupole moment (in-band transitions)	$\langle I_f K \mid\mid E2 \mid\mid I_i K \rangle = (2I_i + 1)^{1/2} \langle I_i K20 \mid I_f K \rangle \sqrt{\frac{5}{16\pi}} eQ_o$
	$\langle K_f I_f \ \mathcal{M}(\lambda) \ K_i I_i \rangle = \sqrt{2I_i + 1} \langle I_i 0 \lambda K_f I_f K_f \rangle$
"Intrinsic" matrix element (inter-band transitions)	$\times \langle K_f \mid \mathcal{M}(\lambda, \mu = K_f) \mid K_i = 0 \rangle \begin{cases} \sqrt{2} & K_f \neq 0 \\ 1 & K_f = 0 \end{cases}$
Reduced transition probability	$B(E(M)\lambda; I_i K_i \to I_f K_f) \equiv \frac{ \langle I_f K_f \ E(M)(\lambda, \mu) \ I_i K_i \rangle ^2}{2I_i + 1}$

Terminology

000	Over a state water is a static and Devel
GSB	Ground-state rotational Band
Static moment	$< I \mid \mid M(\lambda) \mid \mid I >$
"Safe" Coulex	Collision energy low enough that Coulomb-nuclear interference is negligible. Rule of thumb: $E_{beam} \le 80\% E_{barrier}$
Sommerfeld parameter?	
Adiabaticity?	
Eccentricity?	

Reorientation Effects: Systematic Error

39

Reorientation Effect

- Requires E_{beam} ≤30 MeV
- Equivalently, surface separation of r=1.25fm $(A_t^{1/3} + A_p^{1/3}) \ge 5 \text{ fm}$
- Coulex is not "safe" for high energy by limiting scattering angle!
- Static moment is the first thing to go.

Surface separation (fm)

40