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What is Gosia?

● Semi-classical, coupled-channels Coulomb excitation
simulation and analysis code.

● Developed in 1980 by Czosnyka, Cline, Wu at Rochester.

● Some concepts from 1978 Winther, deBoer’s
COULEX & Rochester de-excitation code CEGRY.

● Maintained by Czosnyka 1980–2006.

● Gosia Steering Committee (2008): Cline (Rochester),
Gaffney (CERN), Hayes (BNL),
Napiorkowski (Warsaw), Warr (Cologne),
Zielińska (Warsaw)

● Contributions: Hasselgren (Uppsala),
Hayes, Ibbotson (Rochester), Kavka (Uppsala/Rochester),
Kotlinski (Warsaw/Rochester), Srebrny (Warsaw), Vogt (Munchen/Rochester)

● http://www.pas.rochester.edu/~cline/Gosia/index.html

http://www.pas.rochester.edu/~cline/Gosia/index.html
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Semi-classical

● Classical collision trajectory.

● Quantum-mechanical excitation & decay.

● Fully-quantal perturbation calculation not feasible
for multi-step Coulex—calculated population of 
high-lying states sensitive to ~30th order perturbation.

● Appropriate for “safe” Coulex—about <80% Coulomb barrier.

● Somewhat higher for heavy ions if small impact parameter scattering 
excluded. 

● Sommerfeld parameter:

η»1 → wave packet much smaller than interaction region of trajectory.
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Semi-classical Time-Evolution
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Typical Applications

● Predominantly E2 & E3 matrix elements from excitation

● M1, E1… from decay

● Measure B(E2) and/or Qs in ~two-state system

● Many electric and magnetic matrix elements in 
strongly-collective system
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Typical Applications

Strongly-deformed systems
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Collective Rotor:
Intrinsic vs. Individual M.E.

178Hf
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E2 Matrix Elements of
Collective Bands

● Requires relative yield only.
● GSB is rigid rotor to good approximation.

1)  Measure Qo assuming rigid rotor.

2)  Fit <Ii+2||E2||Ii> for Iπ>6+ where observed yield is 
sensitive to Qo.

3)  In reality, some iteration with fits to Kπ=2+,4+ required. 
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Gamma Yield Sensitivity to
Quadrupole Moment

● Measured Qo sensitive to 
rotational band relative 
gamma yield intensity

● No external 
normalization

● Qo typically sensitive to 
≤5% level
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Example: Quadrupole moment
of collective nucleus 178Hf

1Hayes et al., Phys. Rev. C 75, 034308 (2007), Thesis (2005, unpublished)
2From B(E2;2+→ 0+) = 159(5) W.u.
 E. Brown, Nuclear Data Sheet 54, 199 (1988)
 Citing R.M. Ronningen et al., Phys. Rev. C 15, 1671 (1977)

= 2.164(10) eb [1] 
assuming rotor

= 2.17(3) eb [2]
from B(E2;2+→0+)

± 1.5% for 6+≤Iπ≤16+

(supporting rotor
 assumption)

Rotor model fit of Qo to measured γ-ray yield of GSB

previous measurement
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Collective Rotor:
Intrinsic vs. Individual M.E.

Hayes et al., Phys. Rev. C 75, 034308 (2007)

Kπ=2+
Kπ=4+

GSB

~5% error~5% error
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Collective Rotor:
Intrinsic vs. Individual M.E.

QuotableQuotable

InformationalInformational
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Typical Applications

Weaker B(E2), several-state problems
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72Ge Coulex

● 72Ge on 208Pb 0.5 mg target
at 301 MeV

● 7 10° scattering angle bins 
from 30° to 165°

● E2 couplings of primary
interest

Ayangeakaa et al., PLB 754, 254 (2016)
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72Ge Coulex

● Results very
similar to previous 
measurements

● What is a reasonable 
expectation of the 
errors?

Ayangeakaa et al., PLB 754, 254 (2016)
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Aside: RACHEL UI for Gosia

● “Semi-GUI”
 

● Developed in 2005,
updates in progress
for Python3, Qt…
 

● Simulation
 

● Experiment planning
 

● Design experiments
for analysis
 

● Data analysis
 

● Plots of results
 

● Run in RACHEL / generate input files for GOSIA
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Simulation: Statistical (only)
Error with ~5% Error in Yields

±0.6%

±0.5%

±0.3%

±1.1%

±0.9%

±0.9%

±1.0%

±1.1%

±0.8%

±1.8%

±1.0%

±0.9%

● 7 scattering angle partitions

● 5% error bars in the 
simulated data

● No random scatter in
data→ no conflicts

Ayangeakaa et al., PLB 754, 254 (2016)

72Ge
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Simulation: Statistical (only)
Error with ~5% Error in Yields

±1.9%

±1.3%

±0.3%

±2.5%

±3.1%

±3.1%

?

±3.0%

±2.2%

±3.4%

±2.3%

±3.0%

● 1 scattering angle partition→ no 
sensitivity to cross section vs. 
impact parameter

● 5% error bars in the simulated 
data

● No random scatter in
data→ no conflicts

Ayangeakaa et al., PLB 754, 254 (2016)

72Ge
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Simulation: Statistical (only)
Error with ~5% Error in Yields

-100%,
+13%

±5%

±2%

±2.5%

● 1 scattering angle partition → 
no sensitivity to cross section 
vs. impact parameter

● Ground sequence only

● 5% error bars in the simulated 
data

● No random scatter in data→ 
no conflicts

● NOTE: strongly deformed case 
would have no sensitivity to 
2→ 0

Ayangeakaa et al., PLB 754, 254 (2016)

72Ge
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Simulation: Statistical (only)
Error with ~5% Error in Yields

±1.1%

±0.6%

±0.2%

±2.0%

±1.0%

±1.4%

±3.0%

±1.5%

±1.7%

±2.5%

±1.5%

±2.0%

● 7 scattering angle partitions
5% error bars in the simulated 
data

● WITH random scatter in 
data→  conflicts

● Gives an indication
of the best-case
sensitivity in the 
measurement

Ayangeakaa et al., PLB 754, 254 (2016)

72Ge
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Simulation: Statistical (only)
Error with ~5% Error in Yields

±1.1%

±0.6%

±0.2%

±2.0%

±1.0%

±1.4%

±3.0%

±1.5%

±1.7%

±2.5%

±1.5%

±2.0%

● Use known B(E2) values to 
narrow the search to the 
correct minimum.

● Remove  known B(E2)s.

● Repeat the search
without constraints.

Ayangeakaa et al., PLB 754, 254 (2016)

72Ge
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Typical Applications

(Approximately) Two-state Problems
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Reorientation Effects

● Coulomb excitation
of 60Ni beam by 16O
beam at safe energy
of 30MeV

● Predicted population
of 2+

1 excited state

● Known
B(E2;2+

1→ 0+
1) = 13 W.u.

● Constructive / destructive
interference

Q2+ = <2+
1||E2||2+

1>

2+
1 Level population (norm)

(RACHEL / GOSIA
 simulation)
(RACHEL / GOSIA
 simulation)
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Reorientation Effects:
Coulomb-Nuclear Interference

Q2+=-0.73 eb

Pexp / PQ=0
Assuming rotor

Population Pexp/PQ=0 of 2+ state vs. scattering angle (spectrograph)
Cline et al., Nucl Phys A 133, 445 (1969)
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Reorientation Effects:
Systematic Error

Q2+=-0.73 eb

Pexp / PQ=0

Population Pexp/PQ=0 of 2+ state vs. scattering angle (spectrograph)
Cline et al., Nucl Phys A 133, 445 (1969)

● Requires Ebeam ≤30 MeV

● Equivalently, surface separation
of r=1.25fm (At

1/3 + Ap
1/3) ≥ 5 fm

● Coulex is not “safe” for high
energy by limiting scattering
angle!

● Static moment is the first
thing to go.
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Reorientation Effects:
Systematic Error

Q2+=-0.73 eb

Pexp / PQ=0

Population Pexp/PQ=0 of 2+ state vs. scattering angle (spectrograph)
Cline et al., Nucl Phys A 133, 445 (1969)

● Ebeam ≤30 MeV

● B(E2;0+→2+) = 0.0917(18) e2b2

● Q
2+

 = 0.00(8) eb
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Semi-classical

Maximum safe bombarding energy per nucleon as a function of target Z.
(Gosia manual)
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Gosia2

● ~1 strongly populated state; can’t self-normalize
 

● Normalization to Rutherford is difficult experimentally (as 
opposed to older spectrograph data).
 

● Make use of mutual target / projectile excitation.
 

● Deduce transition probability (usually B[E2]) from known 
transition probability in collision partner.
 

→ Independent measurement of quantity of interest, but 
does require input of previous measurements for collision 
partner.
 

● The static moment and B(E2) both affect population.  
Accuracy and realistic uncertainty require correlated 
error calculation.
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Gosia2

M. Zielińska et al.: Eur. Phys. J. A (2016) 52: 99
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70Se: Oblate or Prolate?

A.M. Hurst et al., PRL 
98, 072501 (2007).

● Hurst et al.:  70Se on 104Pd @ 206MeV
(>7fm separation)
→  <2% population of states 
     other than 2+

1
● Gosia2: norm proj to targ γ-yield
● Fit B(E2; 0+ → 2+

1 ), <2+
1||E2||2+

1> 
● Requires accurate data for collision

partner 104Pd
● Luontama et al. 104Pd (p,2n), (p,p’), 

Coulex (1986)
● Consistency with T1/2 meas requires 

<2+
1||E2||2+

1> less than -0.5eb
→ consistent with 
     prolate deformation

● Note: Common mistake is to fit B(E2) without including 
correlations with  <2+

1||E2||2+
1> in error calculation.

1-σ Heese et al. T1/2
Z. Phys. A 325, 45 (1986)

Rotor

1-σ (Hurst)Hurst))



Nuclear Data Week 201931 A.B. Hayes

Validation of the Method in
70Se Experiment Using 74Se

A.M. Hurst et al., PRL 98, 072501 (2007).

● Measured gamma yields for Coulex of 74Se on 104Pd

● Combined with <2+||E2||2+> = -0.36(7) eb
(19% error) from Lecomte PRC 18, 2801 (1978).

● Adopted B(E2) = 0.387(8) e2b2 (2% err)

● Hurst et al. obtained B(E2;0+→2+) = 0.36(2)e2b2 
(5.5% err)
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Conclusions

● Very precise measurements are possible using Coulex and GOSIA
 

● Partitioning of data is very important (i.e. scattering angle)
 

● Collective strength / many populated states → relative gamma yields 
give absolute measurements
 

● Two-state problems require
● Normalization to collision partner yields
● Known B(E2), <2+||E2||2+> of collision partner

 
● Other problems lie somewhere in the middle

 
● Safe Coulex usually better than high statistics

 
● Inverse kinematics—don’t get me started...

 
● Include all matrix elements in correlated error calculations

 
● Plan and simulate analysis before submitting proposals!
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END
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END
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END
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END
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x

Yield Gamma-ray intensity following Coulex

EM multipole operator 
matrix element

Reduced matrix element

Quadrupole moment
(in-band transitions)

“Intrinsic” matrix element
(inter-band transitions)

Reduced transition
probability

Terminology
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x

GSB Ground-state rotational Band 

Static moment

“Safe” Coulex Collision energy low enough that 
Coulomb-nuclear interference is 
negligible.
Rule of thumb: E

beam
 ≤ 80% E

barrier

Sommerfeld parameter?

Adiabaticity?

Eccentricity?

Terminology
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Reorientation Effects:
Systematic Error

16O Incident Energy (MeV)

<
2

+
1
||

E
2

||
2

+
1
>

 (
e
b

)

● Requires Ebeam ≤30 MeV
● Equivalently, surface separation

of r=1.25fm (At
1/3 + Ap

1/3) ≥ 5 fm
● Coulex is not “safe” for high

energy by limiting scattering
angle!

● Static moment is the first
thing to go.
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Reorientation Effect

1
 –
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x
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Surface separation (fm) 0        1        2        3

● Requires Ebeam ≤30 MeV
● Equivalently, surface separation

of r=1.25fm (At
1/3 + Ap

1/3) ≥ 5 fm
● Coulex is not “safe” for high

energy by limiting scattering
angle!

● Static moment is the first
thing to go.
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