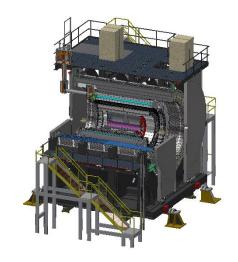
The sPHENIX Project



RHIC Program S&T Review

September 17-19, 2019

Brookhaven National Laboratory

Edward O'Brien

sPHENIX Overview

sPHENIX is a major upgrade to the PHENIX detector. It is a large-acceptance, high-rate detector for Heavy Ion physics that repurposes >\$20M in existing PHENIX equipment, infrastructure and support facilities.

The detector is optimized to measure jet and heavy quark physics by incorporating a Time Projection Chamber, Electromagnetic and Hadronic Calorimeter with a high rate DAQ/Trigger and a 1.4 T solenoidal magnetic field.

MIE Baseline Scope

- A Time Projection Chamber (TPC), Electromagnetic Calorimeter (EMCal), and a Hadronic Calorimeter (HCal) all covering 2π in azimuth. The TPC and HCal have pseudorapidity coverage of $-1.1 \le \eta \le 1.1$. The EMCal has pseudorapidity coverage of $-0.85 \le \eta \le 0.85$.
- A Minimum Bias Trigger Detector (MBD).
- Readout electronics to fully instrument the TPC, EMCal, HCal and MBD.
- A Data Acquisition (DAQ) system with the capability to readout the TPC, EMCal, HCal and MBD with an event rate and data-logging rate commensurate with the sPHENIX physics goals.
- A DAQ/Trigger system that can provide minimum bias and energy cluster triggers at a rate necessary to carry out the sPHENIX physics program in AA, pA and pp collisions at RHIC.
- Project Management to carry the project scope through to a successful on time and on budget completion.

Baseline Approved at PD-2/3

sPHENIX MIE (1.X)

WBS MIE

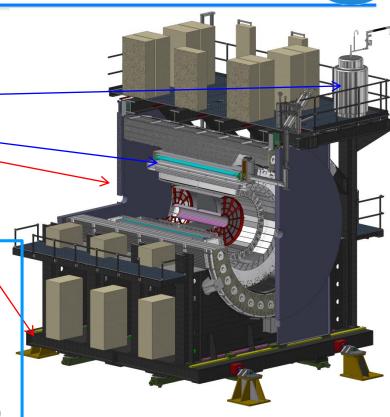
- 1.1 Project Management
- 1.2 Time Projection Chamber
- 1.3 EM Calorimeter
- 1.4 Hadronic Calorimeter
- 1.5 Calorimeter Electronics
- 1.6 DAQ/Trigger → To counting house
- 1.7 Minimum Bias Detector

The final design of sPHENIX is driven by 3 principles:

- Design a detector to meet the Science Mission of measurements of Jets and Upsilons in RHIC environment
- Maximize cost effectiveness and utilize modern technologies where appropriate (SiPM, fast TPC readout)
- Build on existing \$20M+ PHENIX infrastructure

sPHENIX Infrastructure and Facility Upgrade(2.X)

WBS I&F Upgrade


- 2.1 I&F Management
- 2.2 SC Magnet
- 2.3 Carriage & Structural Components
- 2.4 Infrastructure
- 2.5 Installation & Integration

Three large M&S items:

- Barrel Magnet steel
- Carriage/Cradle/Poletips/Platform
- Cryogenics for 1008

Three main labor items:

- SC-Magnet
 - Carriage/Cradle/Poletips/Platform(engineering design)
 - Installation/Integration

sPHENIX Silicon Detectors (3.X)

WBS Silicon Detectors

- 3.1 INTT
- **3.2 MVTX**

- Enables flavor-tagged physics program
- Separates multiple vertices at high luminosity
- Provides tracking between vertex and TPC

INTT is an in-kind detector contribution from RIKEN

sPHENIX MIE Overview

TPC	Project Director	Last CD Achieved	% Complete	СРІ	SPI
\$27.0M AY	Edward O'Brien	PD-2/3 Pending	24.0% BCWP/BAC @ 7/31/2019	1.0	0.95

Scope

 Detector systems produced, tested and ready for installation: Time Projection Chamber w/ electronics, Electromagnetic Calorimeter w/ electronics, Hadronic Calorimeter w/ electronics, DAQ/Trigger, Minimum Bias Detector, Project Management

Not in scope

SC-Magnet, Bldg/Det Infrastructure, Installation and System Commissioning

Schedule

- CD-0 received Sept 2016
- CD-1/3A received Aug 2018
- PD-2/3 review May 2019 (approval pending Sept 2019)
- Early completion Oct 2021
- PD-4 Dec 2022

Cost

\$27.0M AY Total Project Cost including 28.7% contingency on ETC

1008 Infrastructure & Facility Upgrade

TPC	Project Director	Last CD Achieved	% Complete	СРІ	SPI
\$29.5- 35.0MAY	Edward O'Brien	N/A	31.1% BCWP/BAC @ 7/31/2019	I&F: Pre-baseline	I&F: Pre-baseline

Scope

- SC-Magnet support including the Flux Return, Cryogenics into Bldg 1008, Detector Carriage/Cradle, other Bldg 1008 Infrastructure improvements
- sPHENIX Installation, Integration and System Commissioning is part of the scope

Updated RLS for 1008 Infrastructure and Facility
I&F Management and RLS integrated with the sPHENIX MIE

Schedule

- sPHENIX Upgrade Completion date December 2022
- First RHIC run of sPHENIX Feb 1, 2023

Cost

\$32.3 M AY Point Estimate including 25% contingency on ETC

MAPS Vertex Detector (MVTX)

ТРС	Project Director L2 Manager	Status	% Complete
\$4.75M AY	Edward O'Brien Ming Liu	BNL Capital Project: Approval pending addressing C&S review recommendations	Just started

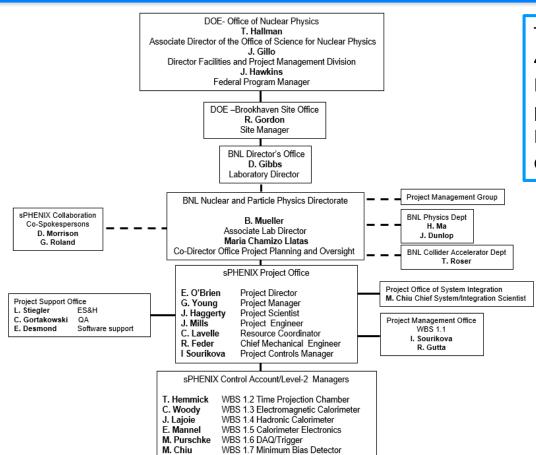
Scope

 Three layers of Monolithic Active Pixel Silicon Sensors modeled on the ALICE Inner Tracking System, mechanical support system, electronics, assembly, integration and services.

Updated RLS for the MVTX as of July 2019

MVTX Management and RLS are integrated with sPHENIX MIE and I&F Upgrade

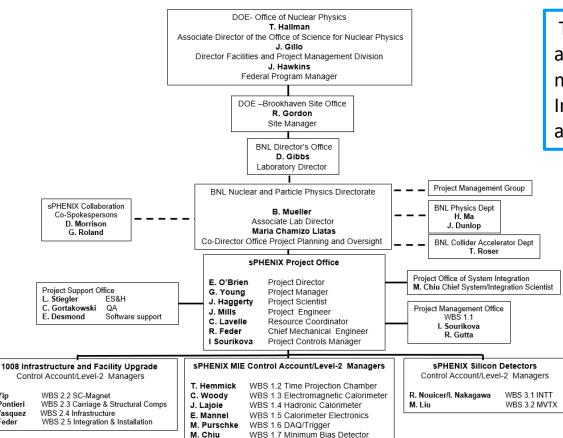
Schedule


- Expect approval Oct 2019
- sPHENIX Upgrade Early Completion date March 2022
- First RHIC run of sPHENIX Feb 2023
- Project Close Out Dec 2023

Cost

• \$4.75 M AY Total Project Cost including 28.6% contingency on ETC

sPHENIX MIE Management Organization



The Org Chart varies from a DOE 413.3B project. There is no FPD in BHSO. The successful delivery of the project is the responsibility of the BNL Lab Director. DOE-OPA no longer oversees the Project.

9/18/2019 BNL S&T Review 10

sPHENIX MIE + Infrastructure & Facility + Silicon Detectors

K. Yip

C. Pontieri

J. Vasquez

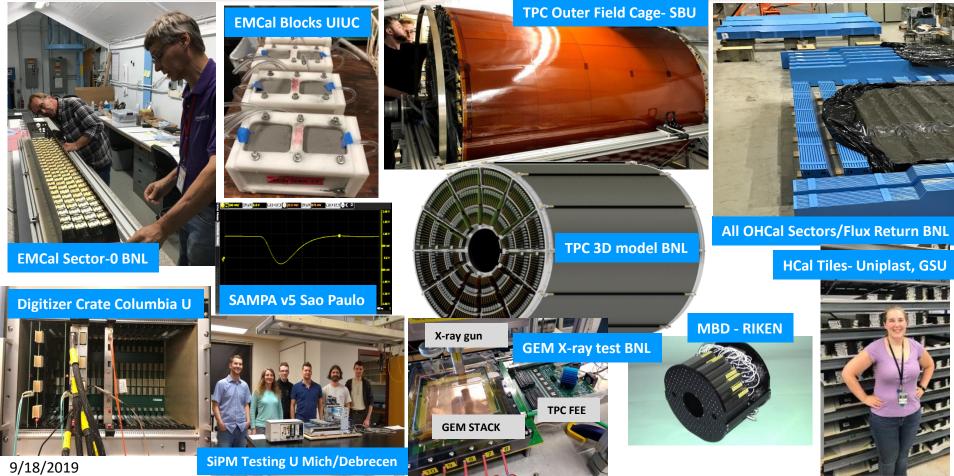
R. Feder

The same management team with an expanded organizational structure manages the sPHENIX MIE, the 1008 Infrastructure and Facility Upgrade and the Silicon Detector Upgrades

Threshold & Objective KPP's

- The individual L2 components of sPHENIX are the MIE deliverables.
- KPP's are determined using bench tests, LED/Pulser/laser tests, and cosmics. Beam collisions are not needed to satisfy the KPP's.

System	Demonstration or Measurement	Threshold KPP's	Objective KPP's
Time Projection Chamber	Preinstall, Bench Test	≥ 90% live channels based on laser, pulser, cosmics	≥ 95% live channels based on laser, pulser, cosmics
Time Projection Chamber	Preinstall, Bench Test	Ion Back Flow ≤ 2% per GEM Module averaged over the active area of ea. GEM Module	Same
Time Projection Chamber	Preinstall, Bench Test w/cosmics	≥ 90% single hit efficiency / mip track, averaged over the active TPC volume	≥ 95% single hit efficiency / mip track
Time Projection Chamber Front End Electronics	Preinstall, FEE Stand- alone Bench Test	Cross talk ≤ 2% per channel, averaged over all channels	Same
EM Calorimeter	Preinstall, Bench Test	≥ 90% live channels based on LED, cosmics	≥ 95% live channels based on LED, cosmics
Hadronic Calorimeter	Preinstall, Bench Test	≥ 90% live channels based on LED, cosmics	≥ 95% live channels based on LED, cosmics
EM Calorimeter	Preinstall, Bench Test	Each sector with an absolute energy pre-calibration to a precision of ≤35% RMS	Same
Hadronic Calorimeter	Preinstall, Bench Test	Each sector with an absolute energy pre-calibration to a precision of ≤20% RMS	Same
Min Bias Trigger Detector	Preinstall, Bench Test	≥ 90% live channels based on laser. 120 ps/channels timing resolution w/ Bench Test	≥ 95% live channels based on laser. 100 ps/channels timing resolution w/ Bench Test
DAQ/Trigger	Event rate	10 kHz with random pulser	15 kHz with random pulser
DAQ/Trigger	Data Logging Rate	10 GBit/s with pulser	Same


sPHENIX Accomplishments

- PD-2/3 approved by BNL POB subcommittee Sept 2019. Waiting for Concurrence by BHSO/DOE-NP and Lab Director Approval
- Successful sPHENIX MVTX Review July 2019. Preparing MVTX PMP and addressing all recommendations.
- All 32 Outer HCal Sectors/Magnet Flux Return now at BNL.
- All LLP's approved at CD-3A have been placed. They are: 100k SiPMs, 2500km of Scintillating fiber for EMCal,
 7000 Scin tiles for HCal, 19 metric tons of tungsten powder for EMCal.
- Partial delivery of LLP-1 orders, 60k/100k SiPMs, have arrived at Univ. of Michigan. Partial deliver of LLP-2 scintillating fibers, 600/2500 km, have arrived at UIUC. Fab work on LLP-3 scin tiles has started at vendor
- Assembly of 1st six OHCal sectors begun with preproduction parts.
- SAMPA v5 (TPC ASIC) engineering run chip order ready for submission to vendor. Funds being transferred to SBU for order. FDR complete.
- EMCal preproduction Sector 0 assembly complete. Sector 1 blocks > 85% complete as UIUC.
- Bids for Bldg 1008 Cryo Components RFP (\$1.1 M). Award process ongoing.
- Carriage/Cradle FDR held in August. Checking and sign-off of final drawings ongoing.
- R&D work progressing on all sPHENIX detector components.

sPHENIX Components

OHCal Instrumented Sectors

Collaborators from Baruch, ISU, Lehigh, Ohio U, Rutgers & Wayne State working on instrumenting the first 6 sectors of the OHCal.

All electronics for 6 sectors at BNL.
Waiting for delivery of a few sheet metal parts to light tight and test OHCal sectors w/cosmics

sPHENIX Baseline Budget Profile

Requested Funding Profile At Year K\$											
	Prior Yrs	FY17	FY18	FY19	FY20	FY21	FY22	Total			
R&D		1,513	4,260	350				6,123			
CDR		100	200					300			
PED											
Pre-ops											
TEC				5,310	9,524	5,530	213	20,577			
OPC		1,613	4,460	350				6,423			
Total Project Cost		1,613	4,460	5,660	9,524	5,530	213	27,000			

The Baseline Budget Profile

Cost Baseline at Level 2

	Cost Baseline K\$								
WBS	Level 2 WBS Description	Baseline							
1.01	Project Management	\$1,952							
1.02	Time Projection Chamber	\$4,170							
1.03	EM Calorimeter	\$5,196							
1.04	Hadron Calorimeter	\$4,069							
1.05	Calorimeter Electronics	\$5,373							
1.06	DAQ/Trigger	\$1,240							
1.07	Min Bias Trigger Detector	\$170							
	Performance Measurement Baseline	\$22,169							
	Contingency	\$4,831							
	Total Project Cost	\$27,000							

Baseline Critical Path

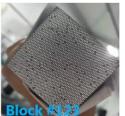
L1 and L2 Milestones in the PMP

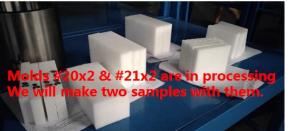
WBS	Level 1 & 2 Project Milestones	Date
1.01.01	Approve Project Baseline and Construction PD2/3	19-Sep
1.02.02.02	TPC Module Factories Preproduction Readiness Review	19-Dec
1.03.02.03.02	EMCal Preproduction Sector 0 Assembled	19-Dec
1.02.06.02	TPC DAM Production Readiness Review	20-Feb
1.05.02.03	HCal Preproduction FEE Complete	20-Apr
1.05.02.01	EMCal Electronics Preproduction Complete	20-May
1.03.01.03.01	EMCal W Powder Acquisition Complete	20-Jun
1.03.02.03.03	EMCal Prod. Readiness Review Blocks/Modules/Sectors Complete	20-Jul
1.02.05.03	SAMPA ASIC Performance Accepted	20-Sep
1.05.01	EMCal/HCal SiPM Sensor Procurement Complete	20-Oct
1.05.02.04	HCal SiPM Boards Assembly Complete	20-Nov
1.02.06.03	TPC DAM Felix 2.0 Production Complete	21-Jan
1.06.02.03	Trigger LL1 Preproduction complete	21-Feb
1.05.02.02	EMCal SiPM Boards Production Complete	21-Mar
1.04.04.02	First Outer HCAL Sector Ready to Install	21-Apr
1.04.01	Inner HCAL Ready for Installation	21-Apr
1.02.01.06	GEM Production Complete	21-May
1.06.01.03	DAQ Production: DAQ Ready for Operation	21-May
1.03.01.03.01	EMCal Scintillating Fiber Acquisition Complete	21-May
1.05.02.04	HCal Electronics Complete: Production	21-Jun
1.02.05.04	TPC FEE Production Complete	21-Jul
1.05.02.02	EMCAL Electronics Complete	21-Jul
1.05.03.02	Calorimeter Electronics Complete	21-Jul
1.07	Min Bias Detector Ready to Install	21-Sep
1.06.03.03	GL1 Ready to Operate	21-Sep
1.04.04.02	Last Outer HCAL Sector Ready to Install	21-Oct
1.02.01.08	TPC Ready to Install (Assembly Complete)	21-Oct
1.06.02.04	LL1 Trigger Production Complete	21-Oct
1.06.02.04	LL1 Ready to Operate	21-Oct
1.02.06.03	TPC DAM Production Complete	21-Oct
1.03.02.03.03	EMCal Ready to Install	21-Oct
1.01.01	Early Project Completion	21-Oct
1.01.01	Approve Project Closeout PD-4	22-Dec

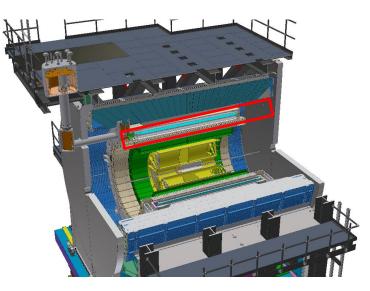
9/18/2019

sPHENIX Scope Restoration: High Eta EMCal

The sPHENIX EMCal had an eta coverage reduction from -1.1< η <1.1 to -0.85< η <0.85 during a cost cutting exercise in 2017


- sPHENIX Collaborating Institutions Fudan Univ. and Peking Univ. are building the high eta blocks reduced in the cost cutting exercise. Progress on block building in China to date look good.
- Electronics for the Chinese blocks to be supplied out of the sPHENIX spare electronics pool funded by RHIC Exp Ops.

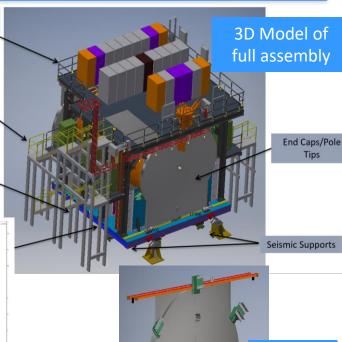


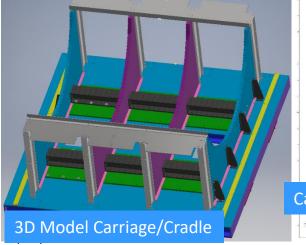

EMCal block fabrication at Fudan University

sPHENIX Scope Restoration: Inner HCal

Instrumentation for the Inner HCal was eliminated as part of the 2017 cost cutting exercise

- Efforts to apply to NSF for funding, and/or to identify international contribution contributions were not successful
- Propose to build IHCal scintillating tiles and electronics as a small BNL capital project


Carriage/Cradle for sPHENIX (2.X)

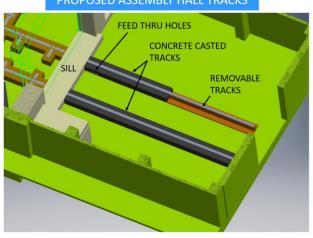


- Final Design Review held 8/7/2019
 - Received FDR memo 9/10 (being reviewed)
 - 100% Cradle Carriage drawings are in checking stage (2-3 weeks)
 - 90% Prepared weldment cradle package -ready for checking
 - Starting work on the SOW
- Base Platform drawings are 95% complete
- Upper Platform drawings are 80% complete
- End Caps drawings are 35% complete

Top and Mid Platforms

Carriage/Cradle Assembly drawing

22

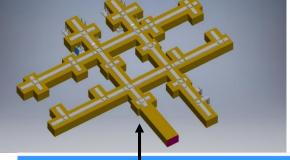

End Caps

Bldg 1008 Track Modification (2.X)

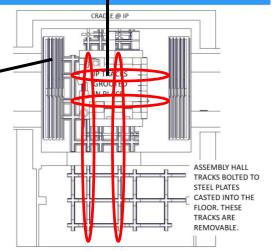
sPHENIX

- Continued detailed analysis of track modifications
- **Timeline**
 - Fall 2019- Design track system, Begin to remove items in IR after North magnet job is complete (2 weeks per C. Biggs)
 - Spring 2020- bidding process
 - Summer 2020- Construction begins

PROPOSED ASSEMBLY HALL TRACKS



- IR tracks will be cast in concrete.
- Piping/cable tray/track will need to be removed
- Removing these items will open up access to underneath the carriage base



Tracks were designed to handle 450 tons, not the 900 tons we require for sPHENIX

EXISTING TRACK CONFIGURATION

BNL S&T Review

Summary

- Successful MIE PD-2/3 Review in May 2019
 - Project team/Organization in place
 - Baseline is set
 - Scope, schedule, and cost well defined and realistic
 - All review recommendations addressed
 - Project Management Plan written
 - Awaiting approval/concurrence by BNL/DOE
- All CD-3A procurements have been placed. Many components starting to arrive.
- Advanced preproduction prototypes exist. R&D continues
 - EMCal Sector 0 complete
 - HCal Sectors 1-6 instrumented
- Plan in place to restore earlier calorimeter reductions due to 2017 cost cutting exercise.
 - Plan includes both BNL and international contributions.
- Good Progress on Infrastructure and Facility Upgrade
 - Barrel magnet flux return sectors all at BNL
 - Major cryogenic component purchases under way

Back Up

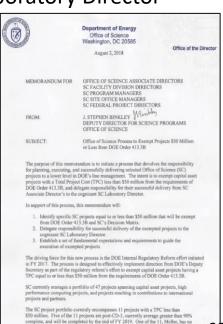
Ultimate Performance Parameters

UPP's unchanged from those approved at CD-1/3A and in PPMP

Ultimate Performance Parameters
Upsilon (1S) mass resolution ≤ 125 MeV
≥ 90% Tracking Efficiency
≤ 10% momentum resolution at 40 GeV /c
\leq 150% / $\sqrt{E_{jet}}$ jet-energy resolution for R=0.2 jets
≤ 8% single photon energy resolution at 15 GeV

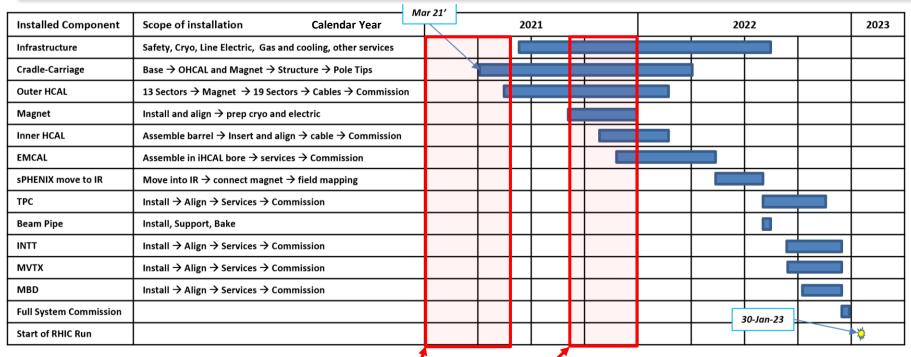
UPP measurements made at 10% central Au+Au RHIC events at average RHIC store luminosity

Cost Performance Report as of the 7/31/19


5 1. CONTRA	ACTOR			2. CONTRACT					3. PROGRAM			4. REPORT PERI	OD			
a. NAME				a. NAME					a. NAME			a. FROM //	YYYMMDD?			
7 Brookhave	en Science Associate	s		sPHENIX					sPH MIE 1907							
8 b. LOCA	TION (Address an	d ZIP Code)		b. Number					b. PHASE				2019 / 07 / 01			
9 Brookhave	en National Laborator	y										b. TO /ΥΥΥ	איזאיזען (בוכוואיזען			
10				c. TYPE			d. SHARE RA	ATIO	c. EVMS ACC	CEPTANCE						
11									NO	X YES	(YYYYMMDD)		2019 / 07 / 31			
2 5. CONTRA	ACT DATA															
3 a. QUAN	itit b. Negotia	c. ESTIMATE	ED COST OF	d. TARGET F	ROFITIFEE	e. TARGET	PRICE	f. ESTIMATE	D PRICE	g. CONTRAC	T CEILING	i. DATE OF O	TBIOTS (1/1)	Y-Y-714114DD7		
4	COST)THORIZED U	NPRICED WO													
5 1	0		0	1)	1	D		0	()					
6 ESTIMAT	TED COST AT COMPLE							7. AUTHORIZED	CONTRACTOR RE	PRESENTATIVE						
7			NT ESTIMATE	CONTRAC		VARI	ANCE	a. NAME	(Last, First, Midd	lle Initial)						
8		_	PLETION		SE											
.9			1)	[(2	2)	(3	3)	O'Brien, Edward								
0 a. BEST			0					c. SIGNATU	RE			d. DATE SIG	(17777MMIDD)			
1 b. WORS			0													
2 c. MOST			0) <u> </u>		D									
3 8. PERFORI																
4	CA (3)			CURRENT PERIOD					UMULATIVE TO D				AT COMPLETION			
5			ED COST	ACTUAL	VARIA	ANCE	BUDGET		ACTUAL	VARIA	ANCE	BUDGETED	ESTIMATED	VARIANCE	_	
6		₩ORK	WORK	COST WORK			₩ORK	₩ORK	COST WORK						Cumu	_
7	ITEM			PERFORMED		COST	_	_	PERFORMED	_	COST	(44)	(dE)	(40)	SPI	CPI
8	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(14)	(15)	(16)		
	ect Management	32,352	32,247	15,159	-105	17,088	1,428,124	1,428,124	1,427,822	0	302	1,951,679	1,951,679	0	1.00	1.00
0 1.02ATPC		209,194	136,065	136,396	-73,129	-331	961,838	862,880	894,083	-98,959	-31,203	4,169,636	4,169,636	0	0.90	0.97
1 1.03A EMC	al	182,951	22,460	49,195	-160,491	-26,735	1,653,135	1,420,636	1,380,943	-232,500	39,692	5,196,092	5,196,092	0	0.86	1.03
2 1.04A HCal	I	1,407	2,117	12,665	710	-10,548	624,743	694,880	739,816	70,137	-44,937	4,068,518	4,068,518	0	1.11	0.94
3 1.05A Calo	orimeter Electronics	171,436	111,362	113,600	-60,075	-2,238	785,585	792,290	819,225	6,705	-26,935	5,373,219	5,373,219	0	1.01	0.97
4 1.06A DAQ	& Trigger	0	0	1,002	0	-1,002	25,972	25,972	27,157	0	-1,184	1,240,177	1,240,177	0	1.00	0.96
	Bias Trigger Detector	77,229	44,020	0	-33,208	44,020	99,148	99,148	34,287	0	64,860	170,170	170,170	0	1.00	2.89
6 b. COST		0	0	0	0	0	0		0	0	0		0	0		
	RAL AND ADMINIS	0	0	0	0	0	0	0	0	0	0	0	0	0		
	TRIBUTED BUDGI	,	1		,				r	1		0	0	0		
9 e. SUBTO		674,568	348,271	328,018	-326,297	20,253	5,578,545	5,323,929	5,323,334	-254,616	595		22,169,490	0	0.95	1.00
	SEMENT RESERVE		242	200.515	200					254		4,830,510				
1 g. TOTAL		674,568	/	328,018	-326,297	20,253	5,578,545	5,323,929	5,323,334	-254,616	595	27,000,000	<u> </u>			
	ILIATION TO CONTRA		LINE							0	0					
	L CONTRACT VAR									-254,616	595	0	0	n		
5																
6						CLASSIF	ICATION (Whe	n Filled In)								
7											16,846,156	ETC				
18											16,845,561	BCWR				
49											28.7%	% conting				
50											24.0%	% complete				
51											25.2%	Planned				

Change in DOE-SC Rules for MIE's with TPC's ≤ \$50M

DOE SC Memo on Project Management dated August 2, 2018


- Raised threshold for application of DOE Order 413.3B from \$10M to \$50M for SC projects.
- sPHENIX was on the DOE SC list of projects impacted by the change.
- Delegation for managing these projects now the responsibility of Laboratory Director
- DOE-OPA no longer responsible for managing these projects.
- ONP prepared guidance document for NP Oversight
- BNL has generated a procedure to address the management of sub \$50M MIE's.
- BNL Procedure in process of being added to SBMS Project
 Management Management System.
- DOE will assign a PEMP goal to BNL to hold them accountable for the successful execution of the project.

sPHENIX Installation/RHIC Run Schedule

29

RHIC Run 2021—January 2021-May 2021

RHIC Run 2022—September 2021-December 2021

9/18/2019 BNL S&T Review