
Tunable Laser Positron Source

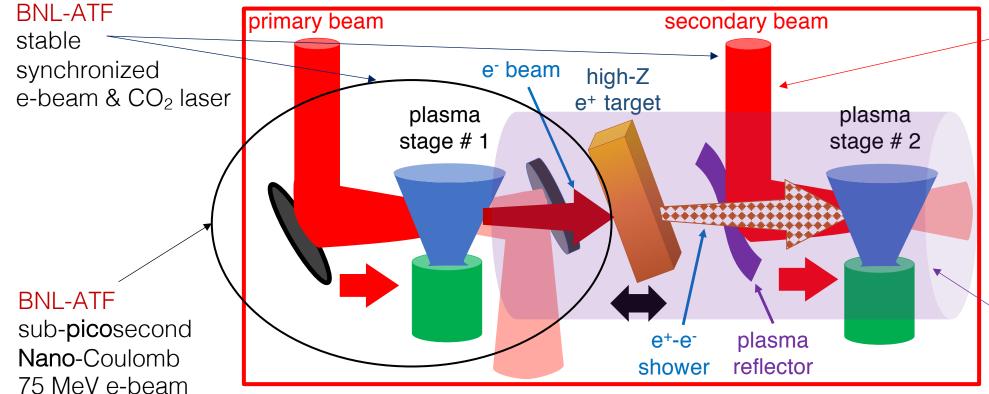
A. Sahai (PI), V. Harid, M. Golkowski, University of Colorado J. Cary, Tech-X, A. Thomas, Michigan, S. Palaniyappan, LANL, H. Chen, LLNL T. Tajima, UCI, V. Shiltsev, Fermilab

22nd Accelerator Test Facility (ATF) Users' Meeting December 3-5, 2019 - Brookhaven National Laboratory

Funding source: DOE / NSF Funding status: proposed

Key Scientific Questions

Can tunable positron beams be produced using laser wakefield accelerators?


Is it possible to control the interaction between ultrashort positron-electron jets / showers and laser wakefield plasma wave?

What are the limits of the range of tunability of laser produced positron beams?

Which applications can benefit from an unprecedented ultrashort positron beam?

BNL-ATF - Tunable Laser Positron Source

BNL-ATF sub-picosecond 1-5 Joule CO₂ laser pulse

BNL-ATF many Tesla Superconducting magnet

BNL-ATF laser, plasma and particle diagnostics

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 081301 (2018)

Quasimonoenergetic laser plasma positron accelerator using particle-shower plasma-wave interactions

Aakash A. Sahai^{*}

Department of Physics and John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, SW7 2AZ, United Kingdom

Channeled Annihilation γ Imaging

PHYSICAL REVIEW B

VOLUME 3, NUMBER 3

1 FEBRUARY 1971

Channeling of Positrons

J. U. Andersen* and W. M. Augustyniak
Bell Telephone Laboratories, Murray Hill, New Jersey 07974

and

E. Uggerhøj Institute of Physics, University of Aarhus, 8000 Aarhus C, Denmark (Received 7 July 1970)

IEEE Transactions on Nuclear Science, Vol. NS-26, No. 3, June 1979

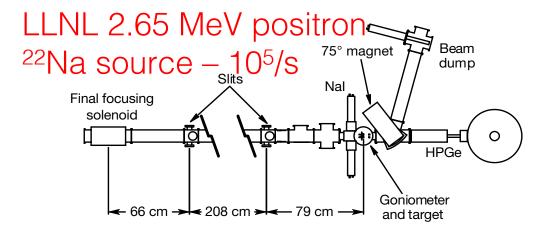
CHANNELING RADIATION FROM POSITRONS

M. J. Alguard, * R. L. Swent, * R. H. Pantell, * B. L. Berman, † S. D. Bloom, † and S. Datz †

VOLUME 77, NUMBER 10

PHYSICAL REVIEW LETTERS

2 September 1996


Increased Elemental Specificity of Positron Annihilation Spectra

P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, and K.G. Lynn Brookhaven National Laboratory, Upton, New York 11973

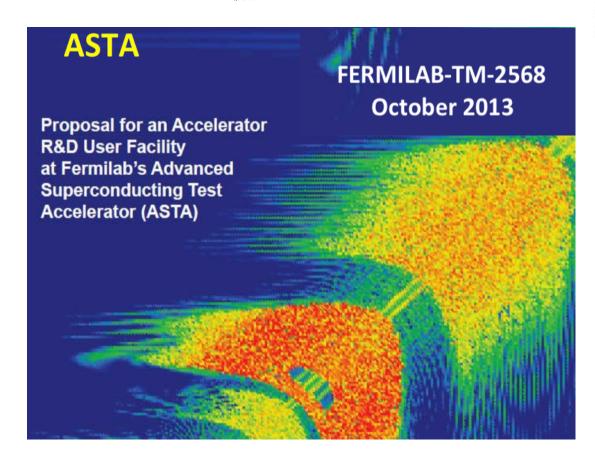
2IRI, Delft University of Technology, Mekelweg 15, NL-2629JB Delft, The Netherlands

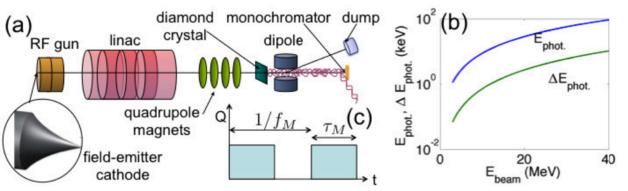
Spatial sampling of crystal electrons by in-flight annihilation of fast positrons

A. W. Hunt*†, D. B. Cassidy*†, F. A. Selim‡, R. Haakenaasen§, T. E. Cowan†, R. H. Howell†, K. G. Lynn \parallel & J. A. Golovchenko*¶# NATURE | VOL 402 | 11 NOVEMBER 1999

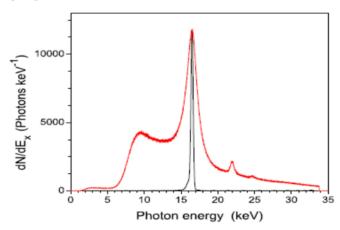
...development of practical atomic-scale channeling measurements of electronic spin densities, and momentum profiles in addition to valence and bonding e⁻ density maps.

Positron Channeling Radiation / Undulator


PHYSICS LETTERS


Volume 57, number 1

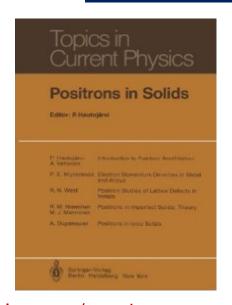
17 May 1976

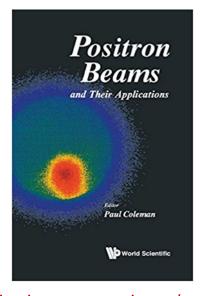

ON THE THEORY OF ELECTROMAGNETIC RADIATION OF CHARGED PARTICLES IN A CRYSTAL

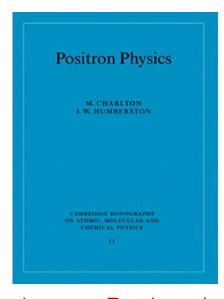
M.A. KUMAKHOV

Figure 6: The layout of the X-ray channeling radiation source experiment in the 50 MeV area of ASTA [13].

Figure 2: Observed spectrum of channeling radiation for transitions in (110) plane of diamond crystal at an electron energy of 14.6 MeV. Red: natural spectrum; black, monochromatized by Bragg reflection to remove the wings of the CR line and the Bremsstrahlung background [6].

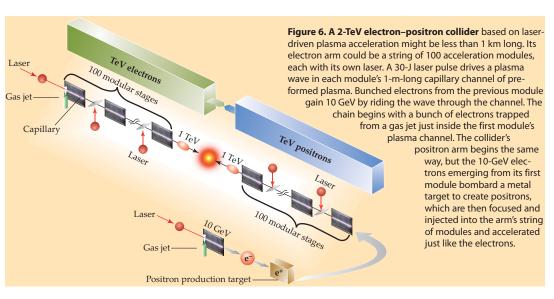



Further Applications


mostly MeV e+

material science

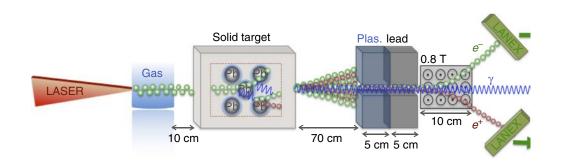
annihilation spectroscopy



medicine / channeling undulators / anti-matter radiation reaction / anti-Hydrogen-Positronium etc ...

Laser-Plasma Collider effort

Laser-driven plasma-wave electron accelerators


Wim Leemans and Eric Esarey

Citation: Phys. Today 62(3), 44 (2009); doi: 10.1063/1.3099645

View online: http://dx.doi.org/10.1063/1.3099645

e+-e-shower / staging – tech is ripe!

ARTICLE

Received 4 Apr 2014 | Accepted 24 Feb 2015 | Published 23 Apr 2015

DOI: 10.1038/ncomms7747

OPEN

Generation of neutral and high-density electron-positron pair plasmas in the laboratory

G. Sarri¹, K. Poder², J.M. Cole², W. Schumaker^{3,†}, A. Di Piazza⁴, B. Reville¹, T. Dzelzainis¹, D. Doria¹, L.A. Gizzi^{5,6}, G. Grittani^{5,6}, S. Kar¹, C.H. Keitel⁴, K. Krushelnick³, S. Kuschel⁷, S.P.D. Mangles², Z. Najmudin², N. Shukla⁸, L.O. Silva⁸, D. Symes⁹, A.G.R. Thomas³, M. Vargas³, J. Vieira⁸ & M. Zepf^{1,7}

LETTER

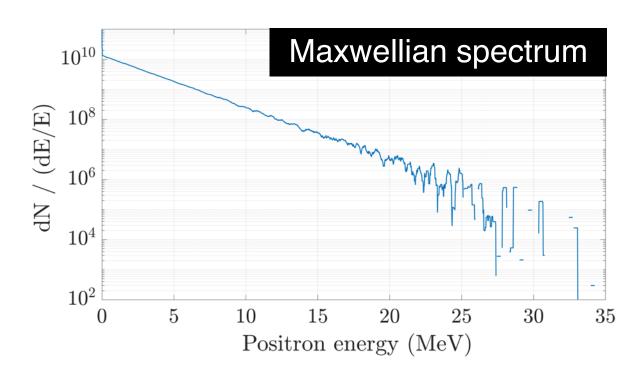
doi:10.1038/nature16525

Multistage coupling of independent laser-plasma accelerators

S. Steinke¹, J. van Tilborg¹, C. Benedetti¹, C. G. R. Geddes¹, C. B. Schroeder¹, J. Daniels^{1,3}, K. K. Swanson^{1,2}, A. J. Gonsalves¹, K. Nakamura¹, N. H. Matlis¹, B. H. Shaw^{1,2}, E. Esarey¹ & W. P. Leemans^{1,2}

190 | NATURE | VOL 530 | 11 FEBRUARY 2016

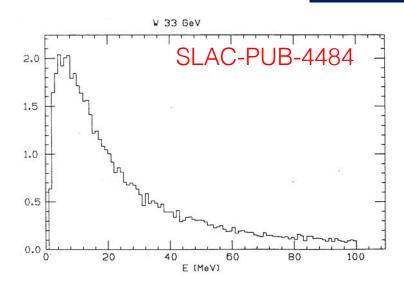
Recent progress in Laser-Plasma Accelerator tech



positron-electron showers

- showers > MeV electrons on converter target
- although "some" authors have claimed so:

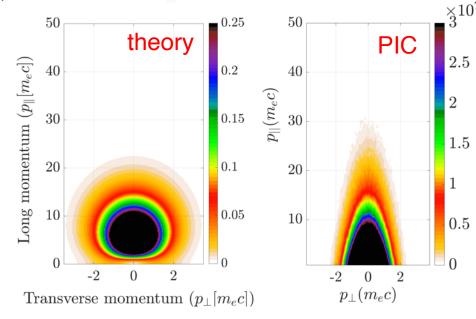
shower ≠ beam pair-plasma ≠ beam

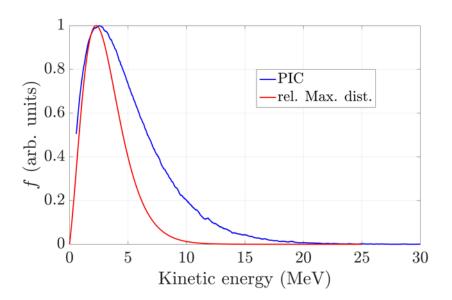

- positrons NOT isolated
- positrons still divergent
- un-localized in momentum space

orders-of-magnitude roll-off at high-energies

1st-stage – positron-production stage

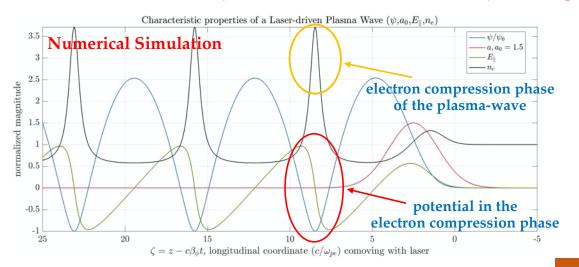
anisotropic relativistic Maxwellian

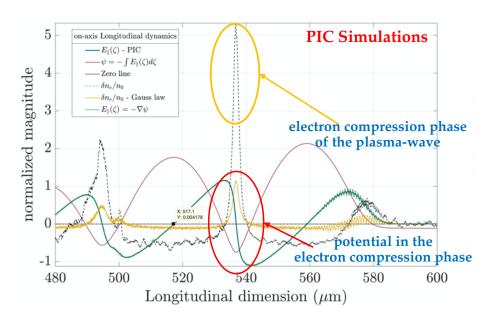

$$f(\mathbf{p}) = C (p_{\perp}^2 + p_{\parallel}^2) \exp \left[-\beta_{\perp} \sqrt{1 + p_{\perp}^2 + A p_{\parallel}^2} \right]$$
$$\beta_{\perp} = m_e c^2 T_{\perp}^{-1}, A = T_{\parallel} T_{\perp}^{-1}$$
$$T_{\perp} = 0.2 \text{ MeV } A = 25$$


peak ~ 2.5 MeV

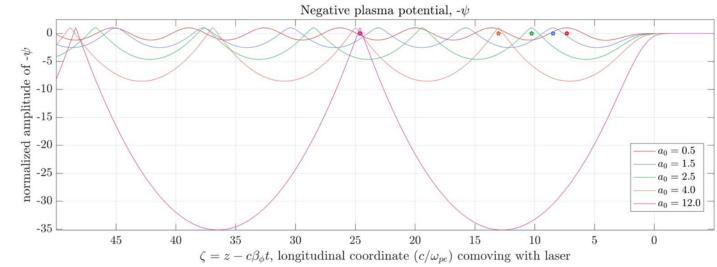
temperature ~ 200keV

shower e+ density 1-10 × 10¹⁶ cm⁻³



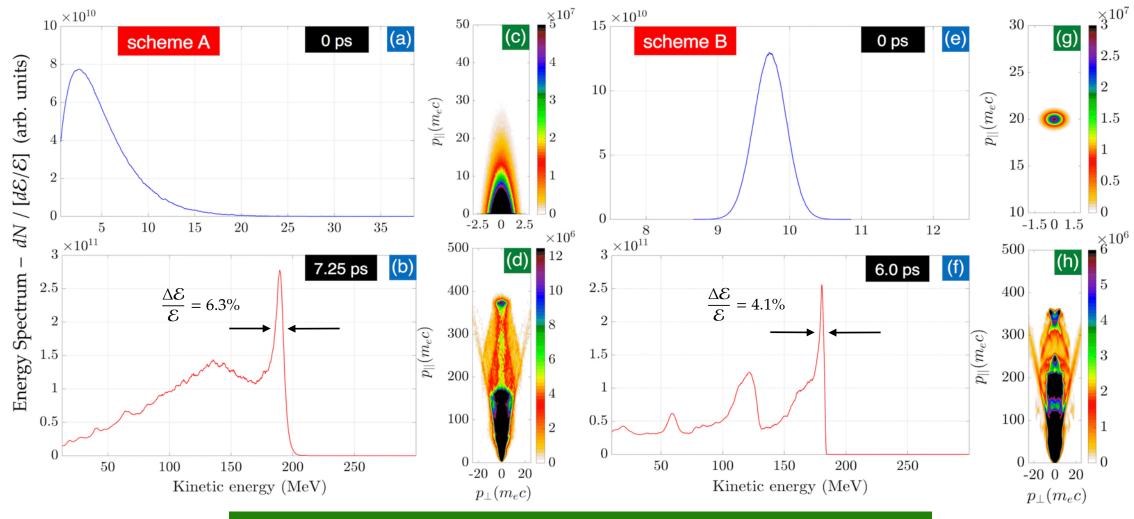

e+-LPA regime – controlling interaction

potential ~ 1 → steepening results in shortening of positron phase



$$k_p^{-2} \frac{\partial^2 \phi}{\partial \xi^2} = \frac{(1+a^2)}{2(1+\phi)^2} - \frac{1}{2}$$

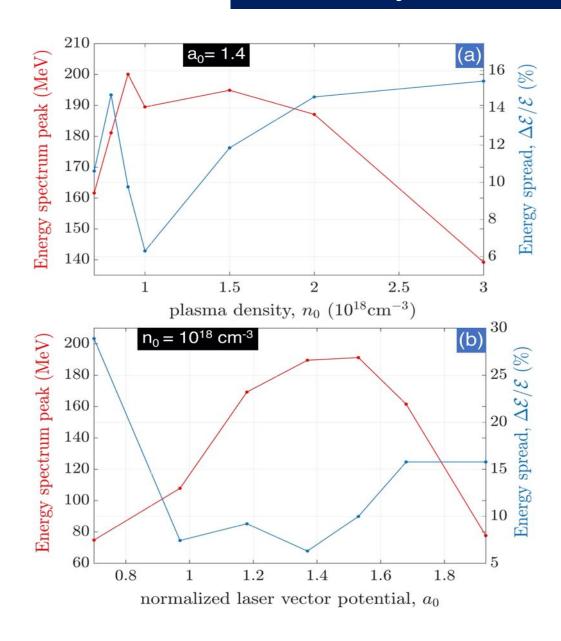
$$n/n_0 = \frac{\gamma_\perp^2 + (1+\phi)^2}{2(1+\phi)^2}$$



low a0 – self-modulated wakefield is USABLE

PIC-based – e⁺ acceleration results

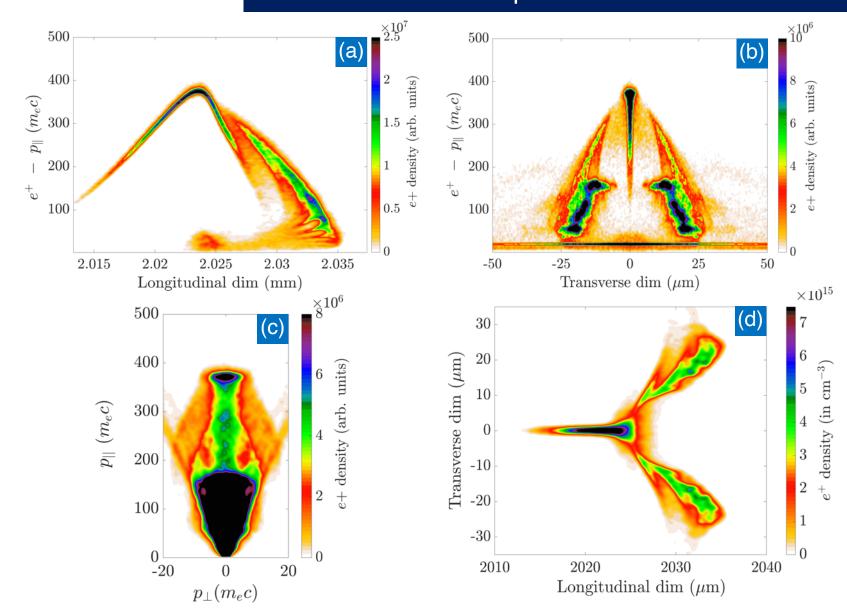
 $n_0 = 10^{18} \,\text{cm}^{-3}, \, E_L \sim 5\text{-}10 \,\text{J}, \, w_0 = 40 \,\text{um}, \, a_0 \sim 1.5 \,\text{J}$



e+-LPA - PIC-based beam phase-space

Tunability - PIC-based parameter scan

critical to understand shower-wave interactions


tuning of

e+-beam spectral characteristics

with laser and plasma properties

PIC-based - positron beam characteristics

ultra-short positron bunch

 $\sim 10^{7-8}$ - e+ / bunch

long. dim $\sim 5 - 7.5 \,\mu\text{m}$

tran. dim $\sim 5 - 7.5 \,\mu\text{m}$

open. angle ~ 5 - 10 mrad

Primary Challenges

Experimental challenges

- characterize ultrashort positron-electron shower produced by BNL-ATF beam
- control the interaction of shower and wave (coupling the laser)

Physics challenges

- Extending trapped charge from shower to the beam
- Cooling the positron beam etc. shower particles are divergent

Technological challenges

- Channeling undulators couple the beam into sample
- Annihilation spectroscopy etc. can the beam help in material science

Proposed Milestones

Yr. 1 – demonstration of positron-electron jet production in metal target, its characterization over the sub-ps electron beam parameter-space (spot-size, charge, current) and its interaction with laser-ionized plasma

Yr. 2 – demonstration of coupling high-power CO2 laser pulse within the plasma-cell simultaneously with positron-electron jets

Yr. 3 – demonstration of tuning of the characteristics of the positron beam by scanning over electron beam, CO2 laser and plasma properties.

Conclusions

 BNL-ATF facility is uniquely poised for the first demonstration of laserdriven tunable positron beam

 Applications of ultrashort positron beams can benefit atomic-scale material characterization.

 Collaboration between CUD, Tech-X, UMich, UCI, Fermilab, LLNL, LANL has been setup.
 Each collaborator brings a unique set of capabilities.

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	60-80
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	0.1-2.0
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	100-250, 500
Transverse size at IP (σ)	μm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	5-100
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	1-3
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	1.5
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	Single bunch

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO₂ Regenerative Amplifier Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	
	Peak Power	GW	~3		
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	mJ	6		
	M ²		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	5-10	~5 TW operation is planned for FY21 (requires further in-vacuum transport upgrade). A 3-year development effort to achieve >10 TW and deliver to users is in progress.	0.1-10
	Pulse Mode		Single		
	Pulse Length	ps	< 2		2-0.5
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available in FY20	0.1-2.5J (y1, y2), 5J (y3)
	M ²		~2		2
	Repetition Rate	Hz	0.05		0.05
	Polarization		Linear	Adjustable linear polarization along with circular polarization will become available in FY20	linear

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters should be achieved by mid-2020, while Stage II parameters are planned for late-2020.	
FWHM Bandwidth	nm	20	13		
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	
Chirped FWHM Pulse Width	ps	≥50	≥50		
Chirped Energy	mJ	10	200		
Compressed Energy	mJ	7	100		
Energy to Experiments	mJ	>4.9	>80		
Power to Experiments	GW	>98	>1067		

Nd:YAG Laser System	Units	Typical Values	Comments	Requested Values
Wavelength	nm	1064	Single pulse	
Energy	mJ	5		
Pulse Width	ps	14		
Wavelength	nm	532	Frequency doubled	
Energy	mJ	0.5		
Pulse Width	ps	10		

Special Equipment Requirements and Hazards

Electron Beam

- Plasma capillary discharge system laser
- Transverse deflecting cavity
- Permanent magnet quadrupole
- Stark-line shift measurement setup (plasma density vs. gas pressure)
- Mask for beam splitting (beam-driven active plasma beam dump)

CO₂ Laser

- Mirror with hole delivery (5 J, sync. with e-beam) into the capillary / gas-jet
- Tape reflector delivery (5 J, sync. with e-beam) into the capillary / gas-jet

Superconducting Magnetic field

Can a superconducting magnet be setup on the beamline?

Experimental Time Request

CY2020 Time Request

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in FEL Room)		
Laser* + Electron Beam	24	120

can run in time-shared mode with plasma beam dump experiment

Time Estimate for Full 3-year Experiment (including CY2020)

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in FEL Room)		
Laser* + Electron Beam	72	360

^{*} Laser = Near-IR or LWIR (CO₂) Laser

SUBMIT YOUR ARTICLE

HOME

BROWSE

INFO

FOR AUTHORS

COLLECTIONS

SIGN UP FOR ALERTS

NEXT >

R2DTO object

Home > Review of Scientific Instruments > Volume 79, Issue 10 > 10.1063/1.2953679

Full . Published Online: 31 October 2008 Accepted: May 2008

High performance compact magnetic spectrometers for energetic ion and electron measurement in ultraintense short pulse laser solid interactions

Review of Scientific Instruments 79, 10E533 (2008); https://doi.org/10.1063/1.2953679

Hui Chen¹, Anthony J. Link², Roger van Maren¹, Pravesh K. Patel¹, Ronnie Shepherd¹, Scott C. Wilks¹, and Peter Beiersdorfer¹

Laser and Particle Beams

cambridge.org/lpb

Research Article

MeV bremsstrahlung X rays from intense laser interaction with solid foils

S. Palaniyappan¹, D. C. Gautier¹, B. J. Tobias¹, J. C. Fernandez¹, J. Mendez¹,

T. Burris-Mog¹, C. K. Huang¹, A. Favalli¹, J. F. Hunter¹, M. E. Espy¹, D. W. Schmidt¹,

R. O. Nelson¹, A. Sefkow², T. Shimada¹ and R. P. Johnson¹

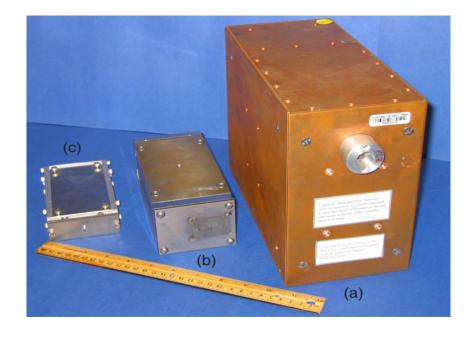
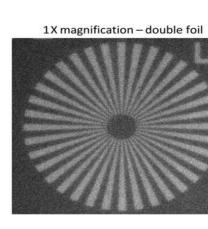
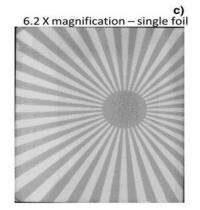




Figure 8: positron spectrometer & gamma-ray diagnostics

