22nd Accelerator Test Facility (ATF) Users' Meeting December 3-5, 2019 - Brookhaven National Laboratory

A compact, tunable plasma beam dump and Energy Recovery

Feasibility study 2019 report

- A. Sahai, V. Harid, M. Golkowski, University of Colorado Denver
- A. Bonatto*, G. Xia, B. Williamson, Y. Zhao, C. Cavut, University of Manchester
- M. Palmer, Brookhaven National Laboratory
- P. Kumar, R. Samulyak, Stony Brook University
- T. Tajima, University of California, Irvine

Beam terminating method and beam terminating device

Abstract

<P>PROBLEM TO BE SOLVED: To terminate a high-energy particle beam by efficiently decelerating it without generating radiation. <P>SOLUTION: Plasma of an encapsulated gas is generated with the incident high-energy particle beam 3 by encapsulating the gas in a waveguide 1 of a linear decelerator, the generated plasma is resonated and vibrated in the waveguide, and the plasma vibration energy is supplied to a load device 9 by taking it out to the outside by electrodes 5a-7a as electrical energy. <P>COPYRIGHT: (C)2009,JPO&INPIT

Images (3)

JP2009140673A

Japan

Download PDF

Q Find Prior Art

∑ Similar

Other languages: Japanese

Inventor: W Chao Alexander, Toshiki Tajima, ダブリュウ. アレキサンダー チャオ, 俊樹 田島

Worldwide applications

2007 ∘ JP

Application JP2007314155A events ③

2007-12- * Application filed by Japan Atomic 05 Energy Agency, Univ Stanford, スタン フォード ユニバーシティ, 独立行政法 人 日本原子力研究開発機構

Feasibility Study - setup limited

Discharge capillary

Discharge struck - plasma builds up to its highest density Density decays to lower values - over several µs Stationary conditions - few tens of ps e-beam traversing

Discharge vs. e-beam – relative timing – density choice NEED ionization laser (lower pressure)

Plasma Density Diagnostics
Stark-shift of emission line – was not available

Bunch compressor stability - 100fs

PMQ Triplet: (T-PMQ)

2 x T-PMQ – 1st ahead of the plasma IP & 2nd after exit ahead of spectrometer

1 adjustable focus T-PMQ – ahead of the IP

fixed focus T-PMQ – after plasma exit

needed to increase beam density

Beam energy filtering:

No plasma:

Plasma Dump OFF vs. ON ???

PlasmaDump OFF vs. ON ???

No plasma:

Some images (external PDF has all images):

Parameters:

Average energy and energy dispersion vs. delay (pressure = 100 Torr):

Stony Brook

Average energy and energy dispersion vs. pressure (delay = 99.8 ns):

Average energy and energy dispersion vs. pressure (delay = 99.8 ns):

Shorter bunch (BC on?) – Energy / energy dispersion vs pressure (99.85 ns):

Shorter bunch (BC on?):

HES_20190510_1254_SHORTER_bunch.asc Gauss filter = 3.0 , hes (6.9 keV/pixel)

Shorter bunch (BC on?) – Energy / energy disp. vs pressure (delay = 99.85 ns):

Shorter bunch (BC on?) – Files from "BC_ON_3PM" folder:

No plasma

80 Torr, 99,00 ns

100 Torr, 99,85 ns

100 Torr, 100,00 ns

spec 20190510 1531 15kV 100Torr plasma 10000 nanosec.asc

 $\sigma_x = 129.0 \, keV \, (184.2 \, pixels)$

