UED Capability & Status

Marcus Babzien

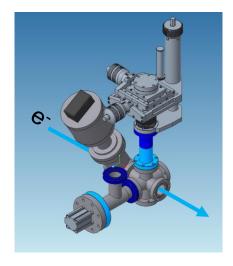
22nd ATF Program Advisory Committee (APAC) and User's Meeting Brookhaven National Laboratory December 3-5, 2019

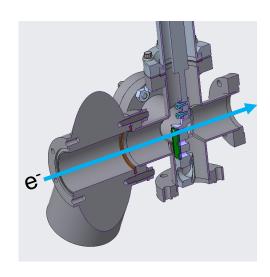
Overview of UED Upgrades & Plans

- Water chiller upgrades
- Beam collimator replacement
- Low-level RF stability improvements
- Drive laser pulse shortening
- Support tunable pump wavelength
- Digital low-level RF with diagnostics & lower drift
- Bunch length diagnostic
- Repetition rate increase
- Study optimal operating point

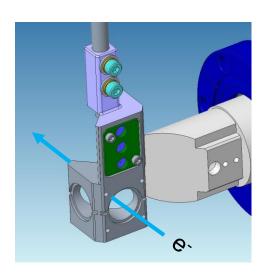
Water Chiller Upgrades

- 2 redundant high-capacity outdoor chiller units in service
- Chilled water cooling distribution system operational
- UED Cleanroom operating on new high capacity chilled water supply
- Previous dedicated chiller in place as backup unit
- Facility operation now possible independent of weather conditions
- Additional laser power supply cooling loop being installed with dedicated heat exchanger to replace old refrigeration unit





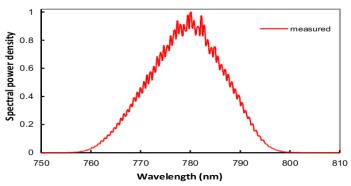
Collimator Refurbishment

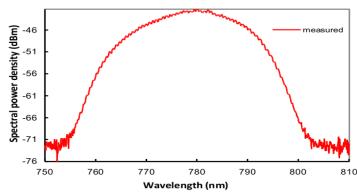

 Improved beam collimator downstream of solenoid prevents mechanical problems of old design, allows better alignment, and has multiple apertures installed

Beamline Assembly

Collimator Insertion

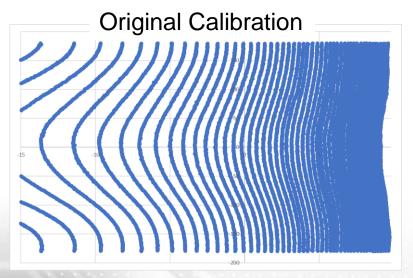
BPM Configuration

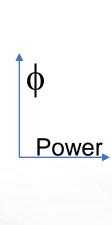

Final assembly currently in progress



Drive Laser Pulse Shortening

- Drive laser currently produces ~250 fs pulses for UED sample pumping. (e⁻ probe is typically shortened via compression)
- The drive laser amplifier stretcher/compressor/optics are designed for bandwidth supporting down to 50 fs pulses, and the current 160 fs oscillator does not produce a chirped pulse long enough to completely optical avoid damage at nominal output energy
- Shorter oscillator seed pulse would lead to improved temporal resolution closer to that available at other UED facilities
- Autocorrelator studies in progress to minimize pulsewidth in current configuration
- Replacement 16 nm bandwidth oscillator received last month:



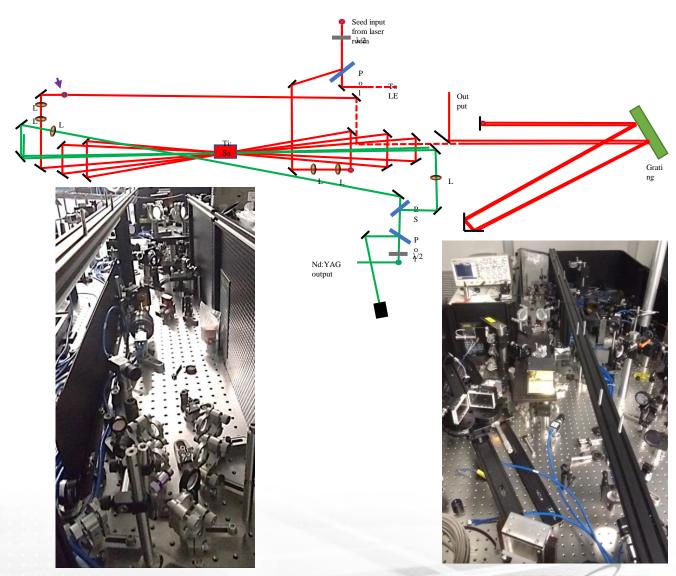


LLRF stability improvements

- Added slow phase control loop with independent phase measurement and software feedback to overcome drift that degraded long-integration time experiments
- Beam setup and tuning enhanced by improving IQ modulator calibration:

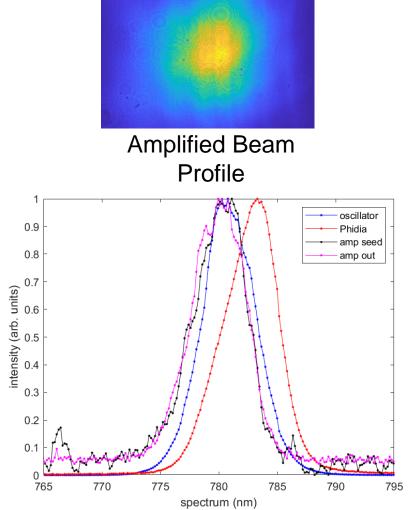
now provide a much larger range of usable & orthogonal phase and amplitude adjustment to operators

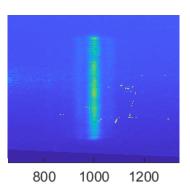
Digital Low-Level RF Diagnostic

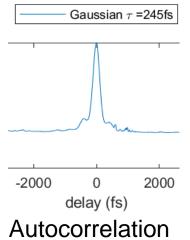

- Will replace existing analog chain
- Although phase noise floor is ~3 dB higher, internal mixers and diagnostic elements will provide more comprehensive monitoring, jitter & drift measurement, and feedback
- Modified version of chassis used extensively at NSLS-II
- Unit in place & ready for installation & interfacing

Support Tunable Pump Wavelength

- BNL Early career award for mid-IR pump-probe materials science requires an Optical Parametric Amplifier to access the desired range of Mid/LW-IR wavelengths
- To reach the OPA
 output energy levels of
 ~100 μJ at λ=1-11 μm,
 a more energetic pump
 pulse from a new
 Ti:sapphire booster
 amplifier is needed
- "Topas HE" OPA for experiments is on order from SpectraPhysics

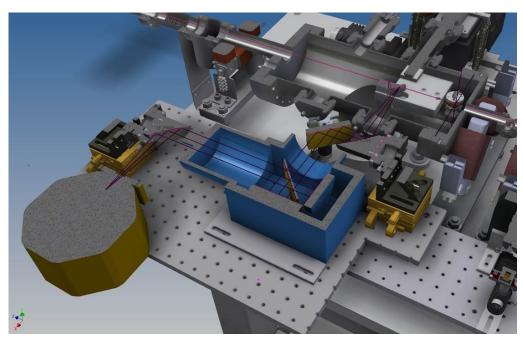



21st APAC & User's Mtg., Nov. 14-16 2018


Support Tunable Pump Wavelength

- Booster amplifier assembled and initial testing completed
- Achieved over 20 mJ,
 <250 fs, close to
 anticipated specification
- Further optimization of pulse duration may be possible (TBWP~0.6)
- Awaiting delivery date from OPA manufacturer
- Parallel optical trombones for synchronization and transport optics still to be installed

Spectra Through MOPA Chain

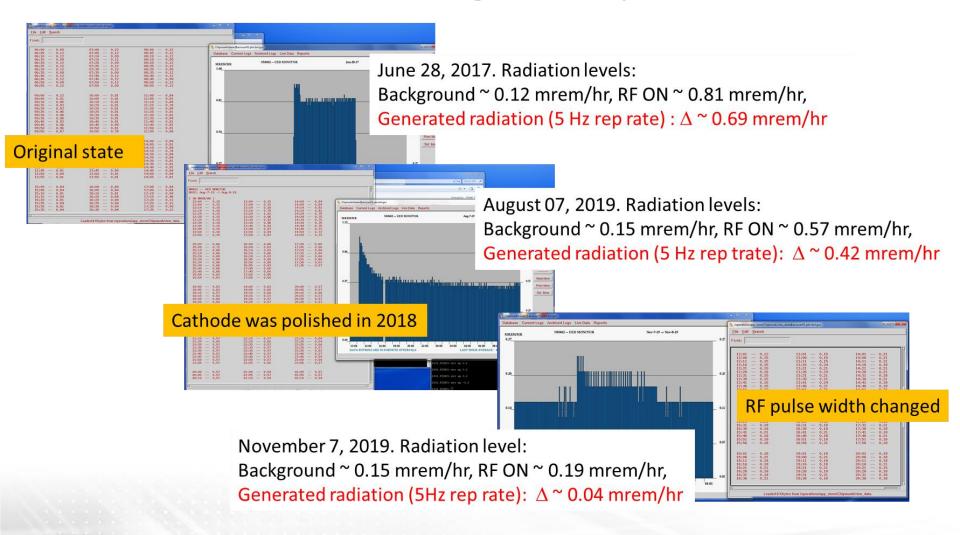


Bunch Length Diagnostic

 CTR Interferometer & Detector commissioned by LDRD experiment

- Currently installed, but must be removed to pass large diffracted UED beam
- More compact version to be designed and tested downstream at UED screen, then moved upstream to UED sample location for routine use

Repetition Rate Increase


- BNL UED has higher charge than many other UED facilities, but would still benefit from increased repetition rate
- Long integration times limit the rate of parameter scans and increase sensitivity to drift
- Klystron is capable of 50 Hz
- Radiation study results suggest no exposure limitation at 10x increase in repetition rate
- Klystron and triggering modifications underway to enable increase once safety review is approved

Repetition Rate Increase

UED radiation background improvement

Optimal Operating Point Study

- Probe pulse charge should be maximized for single-shot sensitivity, but spot size increases and reduces spatial resolution
- A systematic study of optimized spot size versus charge will enable selection of optimal tradeoff for different experimental needs
- Needs dedicated running time in schedule

Conclusions

- Significant upgrades to the UED facility have been completed this year
- Both instrument operating parameters and operational efficiency have been improved
- Near term upgrades underway
- UED facility continuing to mature and become more capable

	BNL	SLAC	MSU
Beam energy, MeV	3	3.68	0.03
N e ⁻ per pulse	1.25 E+6	3.8E+5	500
Temporal resolution, fs	180	102	300
Beam size diameter, μm	300 (100 best)	400 (10 best)	20-40
Max repetition rate	5 (will be 50)	120 (180 best)	1,000
N e ⁻ per sec per μm ²	88 (will be 880)	360	400
Advantage	short bright pulse	short bright pulse	DC (no jitter)

