EIC as ultimate tool for studying nucleon multiparton structure via nucleon fragmentation

Mark Strikman, PSU

Outline

Physics of validity of leading twist dynamics in target fragmentation

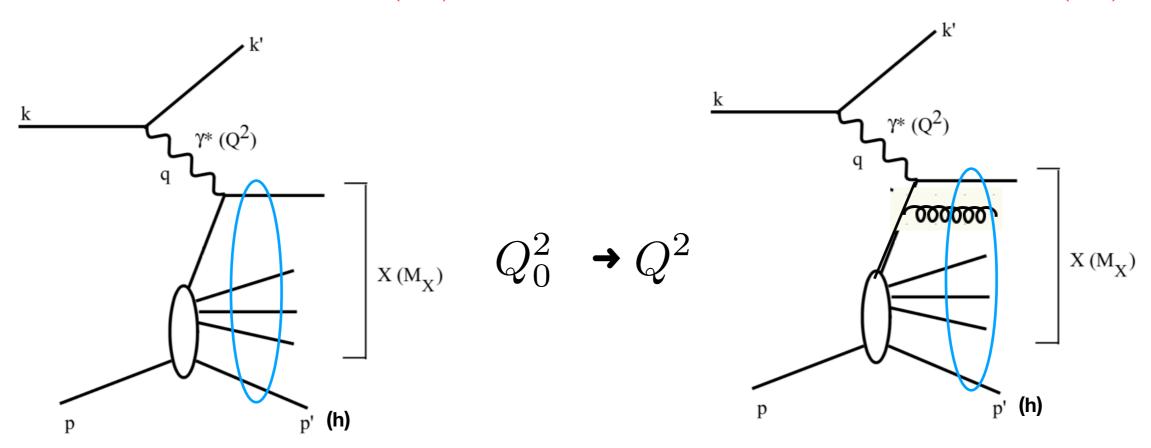
* What is known experimentally about nucleon fragmentation in hard processes

* Observables for EIC

* Few examples of nuclear observables ~

probably will have no time to discuss - some examples in C.Weiss talk

Nucleon Fragmentation in DIS

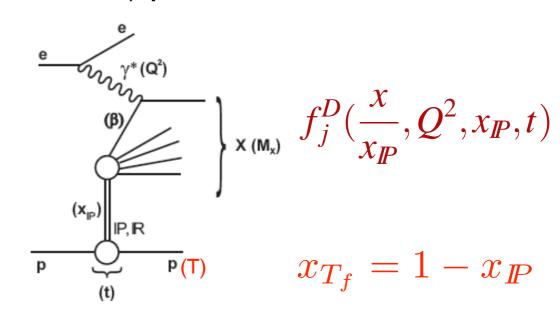

WHY'S

- fragmentation is a probe of multiparton nucleon structure and QCD dynamics for which EIC can add a lot QCD Q² evolution is simple clear advantage as compared to TMD's
- information about fragmentation necessary for optimizing SRC studies for example ΔΔ component of the deuteron
- Formation time of hadrons in the fragmentation region

Note that many requirements to detector for studying fragmentation are similar to the ones for studying SRC are similar

Collins factorization theorem: consider hard processes like

$$\gamma^* + T \to X + T(T'), \quad \gamma^* + T \to jet_1 + jet_2 + X + T(T')$$



Interaction of partons which would form h h with the rest of partons: \bigvee — does not change since overall interaction does not resolve qg which are located at transverse distance $<<1/Q_0$

one can define fracture (Trentadue & Veneziano) parton distributions

at collider

$$egin{align} x_L &= p_{Tag}/p_{init} \ &x_{I\!\!P} = 1 - x_L \ η &\equiv x/x_{I\!\!P} = Q^2/(Q^2 + M_X^2) \ \end{aligned}$$

$$F_{2}(x, Q^{2}) = x \sum_{j=q,\bar{q},g} \int_{x}^{1} \frac{dy}{y} C_{j}\left(\frac{x}{y}, Q^{2}\right) f_{j}(y, Q^{2})$$

$$F_{2}^{D(4)}(x, Q^{2}, x_{\mathbb{P}}, t) = \beta \sum_{j=q,\bar{q},g} \int_{\beta}^{1} \frac{dy}{y} C_{j}\left(\frac{\beta}{y}, Q^{2}\right) f_{j}^{D(4)}(y, Q^{2}, x_{\mathbb{P}}, t)$$

Theorem:

For fixed x_p , t universal fracture pdf + the evolution is the same as for normal pdf's

Comment: ${}^{\mathcal{X}I\!\!P}$ is traditional notation - notion of Pomeron is not necessary in the general factorization analysis

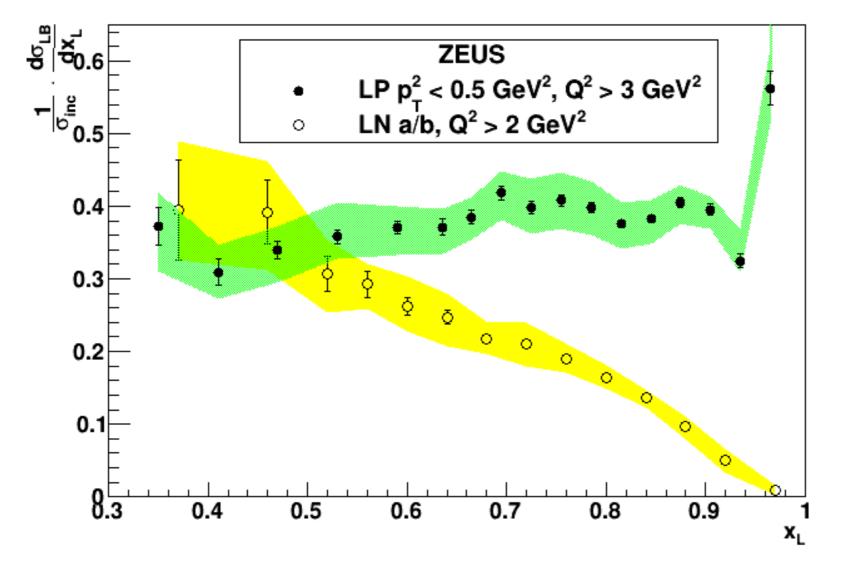
Fracture pdfs are practically not explored except fragmentation in ep scattering in

$$e+p \rightarrow e+p+X, e+p \rightarrow e+n+X$$

Need high statistics as fj are functions of (x,β,Q^{2},t) not only β,Q^{2},t like for quark fragmentation functions (Current fragmentation).

Convenient quantity $x_L=p_h/p_p$ — light cone fraction of proton carried by h

$$z=x_L/(1-x) < 1$$
 Maximal $x_L=(1-x)$


Currently except for diffraction all data are for $x << 1-x_L$ integrals over x and $\beta << 1$.

Soft factorization: weak dependence on x for $z \ll 1$ and not very large Q^2 Strong dependence of leading (large z) baryon production on x (FS77):

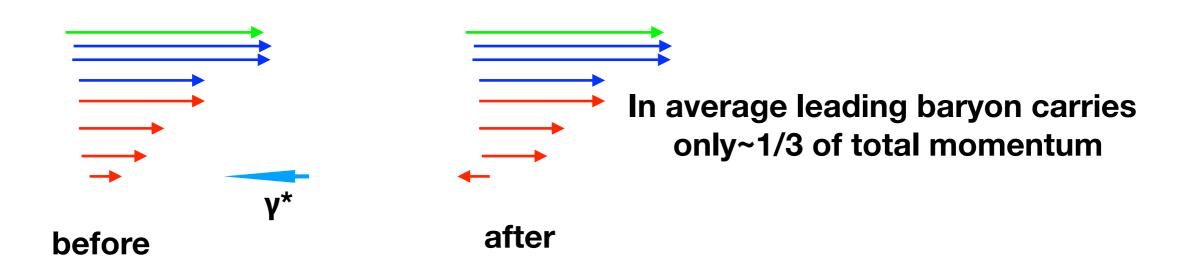
$$f_j(x,z) \propto (1-z)^{n(x)}$$

$$n(x < 0.01) = -1$$
 diffraction + flat (n=0) at smaller xL
 $n(x \sim 0.1) = 0$? 1? onset of sea quark dominance
 $n(x \sim 0.2) = 1$ valence quarks

$$n(x \sim 0.5) = 2$$
? fragmentation of two quarks with large relative momenta

plot prepared by W. Schmidke

 $r_LP = 0.299 + -0.003 (stat.) +0.008 -0.007 (syst.) [not shown in the paper]$ $<math>r_LN = 0.159 + -0.008 (stat.) +0.019 -0.006 (syst.) [as shown in the paper]$


HERA studies missed a puzzle: where are baryons. Should be #baryons - # anti baryons = 1 per event. For small x and $x_L > 0.3$ only 0.46 baryons are observed (70% p, 30% n) (strange baryons not measured but likely 30% correction of neutrons

 \rightarrow A lot (50%) of baryons are produced below $x_L = 0.3$

In nucleus rest frame these baryons have large longitudinal momenta, pL

For example for $x_L = 0.2$, $p_L \sim 3$ GeV

x_{Bj} for these data is ~10⁻³. It is highly nontrivial that a removal of a wee parton leads to a break up with large energy losses - nucleon seems to be pretty fragile

long range correlations in color?

high degree of coherence of small x partons with leading partons

Emerging picture (small x) from my ahalysis:

leading protons $x_L>0.5$ — 3 valence quarks protons $0.5>x_L>0.3$ (?) — 2 valence quarks protons $0.3>x_L>0.1$ (?) — 1 valence quark

mostly protons & few neutrons

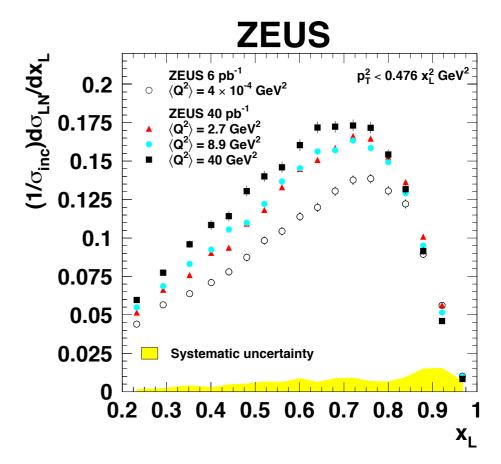
comparable number of neutrons and protons

OBSERVATIONS

if $x \ll (1-x_L)$, nucleon multiplicity for removal of (anti)quark or a gluon are the same.

Soft factorization

Hence no dependence of the x_L distribution on W,


observed

Transition from photoproduction to DIS: disappearance of shadowing - reduction of nucleon yield at $Q^2=0$.

In Gribov - Regge theory presence of shadowing implies presence of a correlation between central rapidity multiplicity, n_h(y~0) and nucleon yield:

larger nh --smaller nucleon multiplicity at large xL

significant reduction for $n_h \sim 2 < n_h >$

There were numerous attempts to extract from reaction

$$ep \rightarrow en + X$$
 pion pdfs

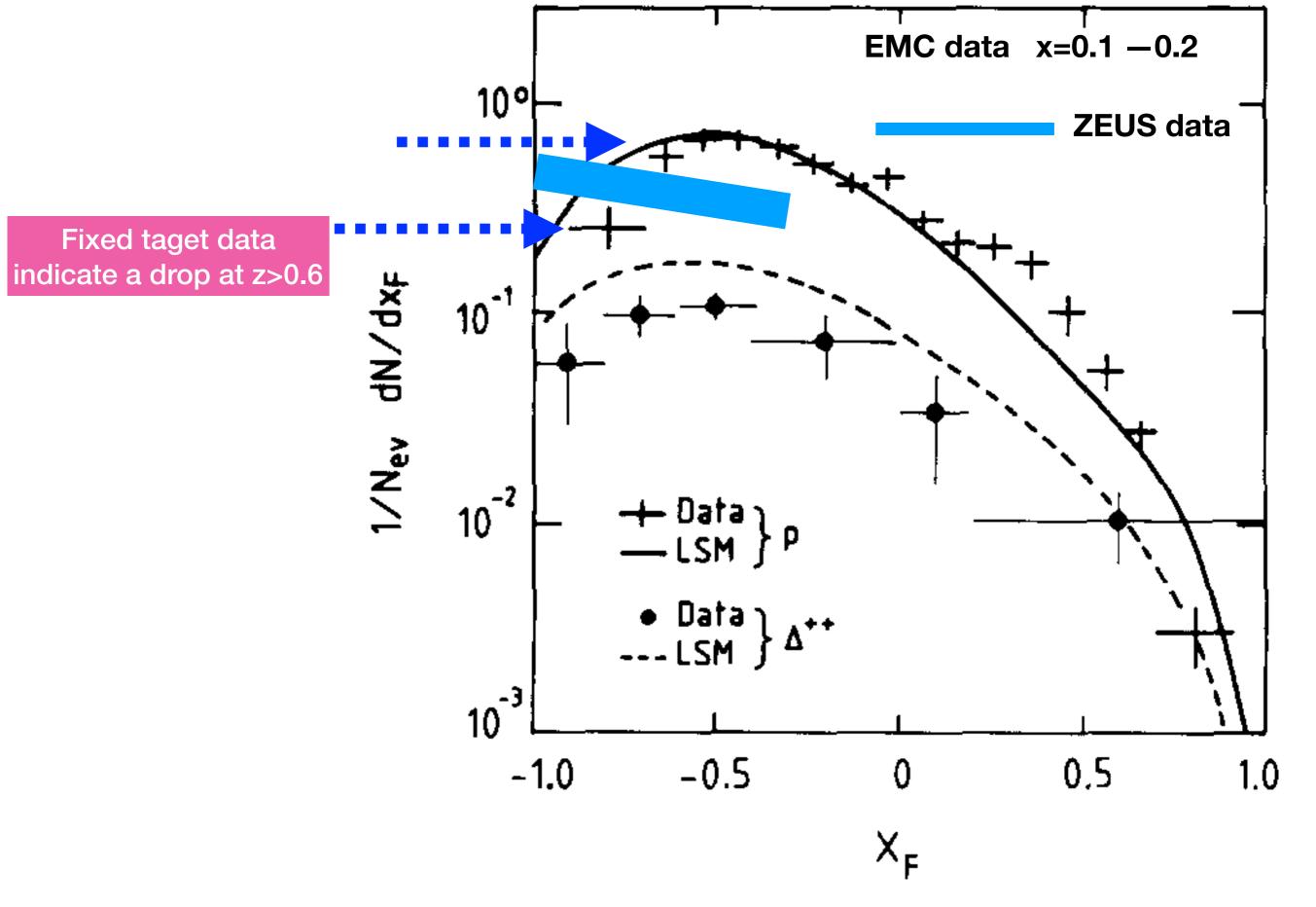
this contribution requires approaching the pion pole which is very difficult:

$$t = -\frac{1}{x_L}(m_N^2(1-x_L)^2 + p_t^2)$$
 $x_L \ge 1 - m_\pi/m_N \sim 0.85, p_t \le m_\pi$

Space time interpretation - pion is well defined if its distance from the nucleon core is $> 1/m_{\pi}$

Soft factorization leads to contributions to nucleon yield from all fragmentation processes. Simple example - data find the ratio of p and n yields of 2 or larger for $x_L > 0.6$, while in the pion model it is equal to 1/2.

x -dependence of fragmentation


For sea quark knock out up to x~0.1 —- approximate matching to HERA:

z=xL/(1-x) <1
$$r(z) = \frac{1}{\sigma_{inc}} \frac{d\sigma_{LN}}{dz} \propto (1-z)^{n(x)}$$

$$n_{p\to p}(x < 10^{-2}) \sim 0$$
 $n_{p\to n}(x < 10^{-2}) \sim 1$

Based on our interpretation of p→n as fragmentation of two valence quarks we expect

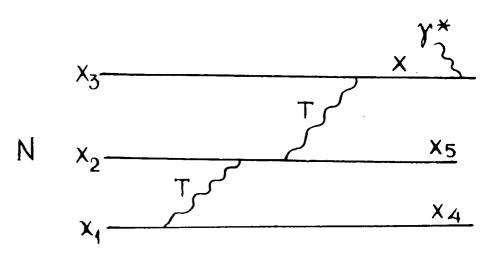
$$r_{p\to n}(z, x < 0.01) \propto r_{p\to p}(z, x = 0.2)$$

W is not large enough to separate fragmentation and central regions for $x_F > 0.3$ (?)

Measured total $\langle n_{tot} \rangle$, forward $\langle n_f \rangle$, and backward $\langle n_b \rangle$ average multiplicity of p (including those from Δ decays), Δ^{++} , and Δ^0

	$\langle n_{\rm tot} \rangle$	$\langle n_{\rm F} \rangle$	$\langle n_{\rm B} \rangle$
р	0.62 ± 0.01	0.10 ± 0.01	0.52 ± 0.01
Δ++	0.10 ± 0.02	0.02 ± 0.01	0.08 ± 0.02
$\mathbf{\Delta}_{0}$	< 0.18		

Significant <n_F>: at high energies central rapidity range with equal number of baryons and anti baryons. For moderate z and moderate W (fixed target energies) no separation of fragmentation regions. Significant Δ^{++} production in the proton fragmentation region for <x> ~ 0.1 ÷ 0.2:


$$\Delta^{++}/p$$
 (direct) = 1/3 ÷ 1/5

pretty large since mostly it is ud fragmentation since d-quark is hit in 10% of interactions

Novel fragmentation pattern at x> 0.5

Expectation: nucleon in large x configurations is smaller than in average.

* In pQCD diagrams corresponding to x → 1 limit are dominated by configurations in which two spectator quarks carry very different light-cone fractions and rather large transverse momenta

- Analysis of centrality leading jets in pA at LHC: (Alvioli et al) area factor of 4 smaller than average
 - ⇒ larger transverse momenta of spectators
 - ⇒ enhanced probability of independent fragmentation of the spectator quarks

$$r(z) = \frac{1}{\sigma_{inc}} \frac{d\sigma_{LN}}{dz} \propto (1-z)^{n(x)} \qquad \text{n(x > 0.5) } \ge 2$$

Tools available at EIC for obtaining qualitatively new information about dynamics of nucleon fragmentation, working of confinement and probing correlations in nucleons

- Double tagging: detecting pions, kaon, charm, dijet in the current fragmentation region to separate processes where u, d, gluon, was involved in hard interaction.
- Polarized ep scattering: comparison of fragmentation for parallel an antiparallel felicities of quark and nucleon
- Polarization/ spin alignment of produced baryons
- Comparison of proton and neutron fragmentation in polarized electron polarized deuteron scattering

A sample of interesting channels

- Removal of u (d) quark with helicity = +/i helicity proton can compare fragmentation of uu and ud with helicities 0 or 1.
- is $ud \rightarrow p = ud \rightarrow n$ not guaranteed: $r_{p \rightarrow u} \stackrel{?}{=} r_{n \rightarrow d}$
- different proportion of I=0 and I=1
 - **► Violation of SU(6) large for large x**
- how Δ isobar production / spin alignment depends on helicity of diquark longitudinal polarization of hyperons:
- octet baryons/ decuplet baryons rate and x dependence
- z-dependence of the meson production
- expect abundant production of baryon production for large x including rare/exotic baryons like 20-multiplet due to large angular momenta of spectator quarks (Feynman problem).
- meson production at large z: (1-z)ⁿ, n -2 4?
- correlations of fragmentation and central multiplicity (easier at HERA)

Summary: from discussed studies we would get a precision knowledge of how a proton wave packet evolves when a parton with given x and flavor, helicity is removed from it.

Removal of color octet vs removal a triplet for large z, and x >0.1 - green pastures

Reference point for fragmentation in pp scattering with a hard (e.g.) dijet trigger. Screening, Multiparton interactions.

Requirements to detector:

x_L range for protons down to 0.1, p_T range: 0 <p_T<0.7 GeV/c

 Δ^{++} , Δ^{0} pions with x_L range from 0.3 to 0.1

Λ hyperon? cτ=7.98 cm

Few applications for scattering off nuclei

Looking for non-nucleonic degrees of freedom (a sample of processes)

Coherence in production of hadrons in the nucleus fragmentation region

Looking for $\Delta \Delta$ admixture in the deuteron in eD scattering

$$\sigma(e^2H \to e + \Delta + X) = \sigma(x' = \frac{x}{(2-\alpha)}, Q^2) \frac{\Psi_{\Delta\Delta}^2(\alpha, k_t)}{(2-\alpha)}$$

spectator mechanism

$$\alpha_{\Delta} = \frac{p_{\Delta}}{p_D/2}$$

 $\alpha_{\Delta} = \frac{\sqrt{m_{\Delta}^2 + p^2} - p_3}{m_d/2}$

EIC frame

Rest frame ,p is Δ momentum

 α =1, p_t =0 corresponds to $p_3 \sim 300$ MeV/c forward in lab

Competing mechanism - Δ 's from nucleons=direct mechanism

$$\frac{\sigma^{1D/\Delta}}{dx dy \frac{d\alpha}{\alpha} d^{2}k_{t}} = \int \frac{d\beta}{\beta} d^{2}p_{t} \rho_{D}^{N}(\beta, p_{t}) x \qquad (18)$$

$$x \frac{d\sigma^{1N/\Delta}}{dx dy d\alpha/\alpha d^{2}k_{t}} \int_{19}^{\beta E_{1}, x/\beta, y, Q^{2}, \frac{\alpha}{\beta - x}, k_{t}^{-} \frac{\alpha}{\beta} p_{t}^{-}}$$

For scattering of stationary nucleon

$$\alpha_{\Lambda} < 1 - x$$

Also there is strong suppression for production of slow Δ 's - larger x stronger suppression

$$x_F = \frac{\alpha_{\Delta}}{1 - x}$$
 $\sigma_{eN \to e + \Delta + X} \propto (1 - x_F)^n, n \ge 1$

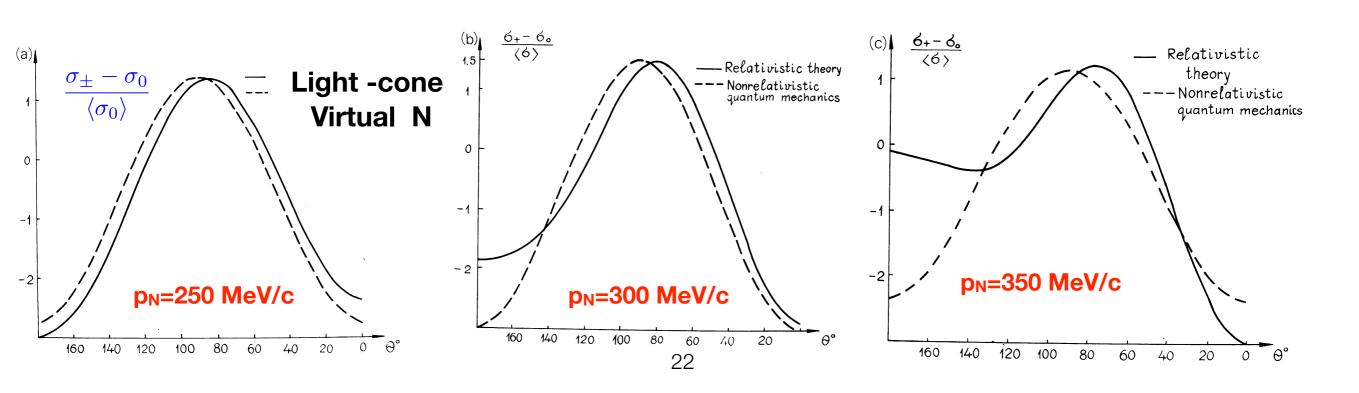
Numerical estimate for $P_{\Delta\Delta} = 0.4\%$

Tests possible to exclude rescattering mechanism: $\pi N \rightarrow \Delta$ FS90

For the deuteron one can reach sensitivity better than 0.1% for $\Delta\Delta$ especially with quark tagging (FS 80-90)

for x> 0.1 very strong suppression of two step mechanisms (FS80) is confirmed by neutrino study of Δ -isobar production off deuteron

Best limit on probability of $\Delta^{++}\Delta^{-}$ component in the deuteron < 0.2%


CRITICAL TEST OF THE RELATIVISTIC EFFECTS USING POLARIZED DEUTERON BEAMS

$$rac{\sigma_{\pm}-\sigma_{0}}{\langle\sigma_{0}
angle}$$
 for $eec{D}
ightarrow e+p+X$

competition: spectator vs direct mechanism of nucleon production.

Background is small for x ~0.2. FS80. However used a simple guess for nucleon fragmentation. Would be nice to do datelining of hERA data and UPC pA processes.

Spectator mechanism predictions for scattering off tensor polarized deuteron

Puzzle in nuclear fragmentation: a factor > 2 fewer slow neutrons are produced in the DIS process

$$\mu + Pb \rightarrow \mu + n + X$$
 E665, 1995

than according to cascade models

Zhalov, Tverskoi, MS 96 - confirmed by Larionov &MS 2019

Option 1:Pythia not modeling well wrong model of fragmentation (not very likely such a gross effect)

Option 2: novel coherence effect - perhaps related to ability off DIS in which a small x parton is removed to break effectively a nucleon