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• Inclusive deep inelastic scattering (DIS) of longitudinally polarized leptons on 
longitudinally polarized targets (p, D, He-3, Li-6, Li-7) → spin structure 
function of the target g1(x,Q2) → polarized quark and gluon distributions. 

• Besides their own interest, polarized nuclear targets (D and He-3) are used 
as a source of polarized neutrons. 

• The neutron g1n(x,Q2)  is needed for  
- flavor separation of quark polarized distributions 
- tests of various spin sum rules (Bjorken, Jaffe-Manohar, Burkhardt-Cottingham, 
Gerasimov-Drell-Hearn) 

• Various nuclear effects make g1n(x,Q2) ≠ g13He(x,Q2). They include: 
- nucleon spin depolarization 
- nuclear binding and Fermi motion 
- off-shell effects 
- potential presence of Δ(1232) isobar in He-3 wave function 
- nuclear shadowing and antishadowing

Nuclear effects in He-3 spin structure function 
g13He(x,Q2) 
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• The effects of spin depolarization, binding and Fermi motion are traditionally 
described within the framework of the convolution approach: 

Standard picture of g13He(x,Q2) 
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the nucleon and the nucleus are opposite. In general, there is no unique pro-
cedure to obtain the light-cone nucleon momentum distributions from the
non-relativistic nuclear wave function. In what follows, we adopt the fre-
quently used convention that the light-cone nucleon momentum distribution
can be obtained from the nucleon spectral function [7, 8, 9]. Thus, g

3He
1 can

be represented as the convolution of the neutron (gn1 ) and proton (gp1) spin
structure functions with the spin-dependent nucleon light-cone momentum
distributions ∆fN/3He(y), where y is the ratio of the struck nucleon to nucleus
light-cone plus components of the momenta

g
3He
1 (x,Q2) =

∫ 3

x

dy

y
∆fn/3He(y)g

n
1 (x/y,Q

2) +
∫ 3

x

dy

y
∆fp/3He(y)g

p
1(x/y,Q

2) .

(1)
The motion of the nucleons inside the nucleus (Fermi motion) and their bind-
ing are parametrized through the distributions ∆fN/3He, which, within the
above discussed convention (one variant of the impulse approximation), can
be readily calculated using the ground-state wave functions of 3He. Detailed
calculations [7, 8, 9] by various groups using different ground-state wave func-
tion of 3He came to a similar conclusion that ∆fN/3He(y) are sharply peaked
around y ≈ 1 due to the small average separation energy per nucleon. Thus,
Eq. (1) is often approximated by

g
3He
1 (x,Q2) = Png

n
1 (x,Q

2) + 2Ppg
p
1(x,Q

2) . (2)

Here Pn (Pp) are the effective polarizations of the neutron (proton) inside
polarized 3He, which are defined by

Pn,p =
∫ 3

0
dy∆fn,p/3He(y) . (3)

In the first approximation to the ground-state wave function of 3He, only
the neutron is polarized, which corresponds to the S-wave type interaction
between any pair of the nucleons of 3He. In this case, Pn=1 and Pp=0.
Realistic approaches to the wave function of 3He include also higher partial
waves, notably the D and S ′ partial waves, that arise due to the tensor
component of the nucleon-nucleon force. This leads to the depolarization
of spin of the neutron and polarization of protons in 3He. The average of
calculations with several models of nucleon-nucleon interactions and three-
nucleon forces can be summarized as Pn = 0.86±0.02 and Pp = −0.028±0.004
[10]. The calculations of [9] give similar values: Pn = 0.879 and Pp = −0.021

3

Nucleon light-cone momentum distributions 
from spectral functions = the probability to find 
spins of the nucleon and the nucleus aligned 
minus that to find their spins anti-aligned  
Ciofi degli Atti, Scopetta, Pace, Salme, PRC 48 (1993) 
R968; Schulze, Sauer, PRC 48 (1993) 38; Bissey, Thomas, 
Afnan, PRC 64 (2001) 024004

Free, on-shell, nucleon structure 
function, Gluck, Reya, Stratmann, Wogelsang, 
PRD 63 (2001) 094005

• To a very good approximation, ΔfN/3He(y)=PNδ(1-y), 
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Effective n and p polarizations, include the effect of the tensor component 
of NN force: Pn=0.979 and Pp=-0.021.

Eq. (2)



• Off-shell corrections for light nuclei are expected to be small. We used the 
results of the Quark-Meson Coupling model, Steffens, Tsushima, Thomas, Saito, PLB 447 (1999) 
233.

Standard picture of g13He(x,Q2) - Cont. 
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Figure 1: The spin structure function g
3He
1 obtained with Eq. (4) (solid line)

and Eq. (2) (dash-dotted line). The neutron structure function gn1 is shown
as a dotted line.

by the dotted line. The proton and neutron spin structure functions used in
our calculations were obtained using the standard, leading order, polarized
parton distributions of Ref. [13].

We would like to stress that the small-x nuclear effects (10−4 ≤ x ≤ 0.2),
shadowing and antishadowing, were not taken into account so far. While we
choose to present our results in Fig. 1 in the region 10−3 ≤ x ≤ 1 and to
discuss our results in the region 10−4 ≤ x ≤ 0.8 (see below), the most com-
prehensive expression for the 3He spin structure function, g

3He
1 , is discussed

in Sect. 4.
As one can see from Fig. 1, the nuclear effects discussed above, among

which the most prominent one is nucleon spin depolarization, lead to a sizable
difference between g

3He
1 and gn1 . One finds that g

3He
1 is increased relative to

5

• The spin structure function 
g13He(x,Q2) at Q2=4 GeV2, Bissey, 
Guzey, Strikman, Thomas, PRC 65 (2002) 064317

• Eq. (2) approximates very 
well the full result for x < 0.1. 
For larger x, the differences are 
sizable.



• The description of nuclei as collections of proton and neutrons may be 
incomplete.

Possible presence of Δ(1232) isobar in He-3 
wave function

5

• Consider the ratio of the Bjorken sum rules for the A=3 and A=1 systems: 

3 Non-nucleonic degrees of freedom

The description of the nucleus as a mere collection of protons and neutrons
is incomplete. In polarized DIS on the tri-nucleon system, this observation
can be illustrated by the following example [17]. The Bjorken sum rule [18]
relates the difference of the first moments of the proton and neutron spin
structure functions to the axial vector coupling constant of the neutron β
decay gA, where gA = 1.2670± 0.0035 [19],

∫ 1

0

(

gp1(x,Q
2)− gn1 (x,Q

2)
)

dx =
1

6
gA
(

1 +O(
αs

π
)
)

. (5)

Here the QCD radiative corrections are denoted as “O(αs/π)”. This sum
rule can be straightforwardly generalized to the 3He-3H system:

∫ 3

0

(

g
3H
1 (x,Q2)− g

3He
1 (x,Q2)

)

dx =
1

6
gA|triton

(

1 +O(
αs

π
)
)

, (6)

where gA|triton is the axial vector coupling constant of the triton β decay,
gA|triton = 1.211 ± 0.002 [20]. Taking the ratio of Eqs. (6) and (5), one
obtains

∫ 3
0

(

g
3H
1 (x,Q2)− g

3He
1 (x,Q2)

)

dx
∫ 1
0

(

gp1(x,Q2)− gn1 (x,Q2)
)

dx
=

gA|triton
gA

= 0.956± 0.004 . (7)

Note that the QCD radiative corrections cancel exactly in Eq. (7).
Assuming charge symmetry between the 3He and 3H ground-state wave

functions, one can write the triton spin structure function g1(x,Q2) in the
form (see Eq. (4))

g
3H
1 (x,Q2) =

∫ 3

x

dy

y
∆fn/3He(y)g̃

p
1(x/y,Q

2) +
∫ 3

x

dy

y
∆fp/3He(y)g̃

n
1 (x/y,Q

2) .

(8)
Combining Eqs. (4) and (8) and using the fact that, for example,

∫ 3

0
dx
∫ 3

x

dy

y
∆fn/3He(y)g̃

n
1 (x/y,Q

2) =
∫ 3

0
dy∆fn/3He(y)

∫ 1

0
dxg̃n1 (x,Q

2)

= Pn

∫ 1

0
dxg̃n1 (x,Q

2) , (9)
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From triton beta-decay, Budick, Chen, Lin, 
PRL 67 (1991) 2630

• Using the convolution formula: 
one obtains the following estimate for the ratio of the nuclear to nucleon
Bjorken sum rules

∫ 3
0

(

g
3H
1 (x,Q2)− g

3He
1 (x,Q2)

)

dx
∫ 1
0

(

gp1(x,Q2)− gn1 (x,Q2)
)

dx
=
(

Pn − 2Pp

) Γ̃p − Γ̃n

Γp − Γn
= 0.921

Γ̃p − Γ̃n

Γp − Γn
.

(10)
Here we used Pn = 0.879 and Pp = −0.021; Γ̃N =

∫ 1
0 dxg̃N1 (x) and ΓN =

∫ 1
0 dxgN1 (x).

If anything, the off-shell corrections of Ref. [11] decrease rather than in-
crease the bound nucleon spin structure functions (i.e. (Γ̃p− Γ̃n)/(Γp−Γn) <
1). Thus, one can immediately see that the theoretical prediction for the ra-
tio of the Bjorken sum rule for the A = 3 and A = 1 systems (Eq. (10)),
based solely on nucleonic degrees of freedom, underestimates the experimen-
tal result for the same ratio (Eq. (7)) by about 3.5%. This demonstrates the
need for new nuclear effects that are not included in Eqs. (1,2,4).

It has been known for a long time that non-nucleonic degrees of freedom,
such as pions, vector mesons, the ∆(1232) isobar, play an important role in
the calculation of low-energy observables of nuclear physics. In particular,
the analyses of Ref. [21] demonstrated that the two-body exchange currents
involving a ∆(1232) isobar increase the theoretical prediction for the axial
vector coupling constant of triton by about 4%, which makes it consistent
with experiment. Consequently, exactly the same mechanism must be present
in case of deep inelastic scattering on polarized 3He and 3H. Indeed, as ex-
plained in Refs. [17, 22], the direct correspondence between the calculations
of the Gamow-Teller matrix element in the triton β decay and the Feynman
diagrams of DIS on 3He and 3H (see Fig. 1 of [22]) requires that two-body
exchange currents should play an equal role in both processes. As a result,
the presence of the ∆ in the 3He and 3H wave functions should increase the
ratio of Eq. (10) and make it consistent with Eq. (7).

The contribution of the ∆(1232) to g
3He
1 is realized through Feynman

diagrams involving the non-diagonal interference transitions n → ∆0 and
p → ∆+. This requires new spin structure functions gn→∆0

1 and gp→∆+

1 , as
well as the effective polarizations Pn→∆0 and Pp→∆+. Taking into account
the interference transitions, the spin structure functions g

3He
1 and g

3H
1 can be

written as

g
3He
1 =

∫ 3

x

dy

y
∆fn/3He(y)g̃

n
1 (x/y,Q

2) +
∫ 3

x

dy

y
∆fp/3He(y)g̃

p
1(x/y,Q

2)
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• → a 3.5% deficit!



• Is has been known for a long time that non-nucleonic dof’s (pions, vector 
mesons, Δ) play important role in calculations of low-energy nuclear physics. 

• In particular, two-body exchange currents involving Δ(1232) increase the 
theoretical description for the axial-vector coupling constant of triton by ~4%, 
Saito, Wu, Ishikawa, Sasakawa,  PLB 242 (1990) 12; Carlson, Riska, Schiavilla, Wiringa, PRC 44 (1991) 619   

• → it is natural to assume that the same mechanism is present also in 
polarized DIS on 3He and 3H, Frankfurt, Guzey, Strikman, PLB 381 (1996) 379

Possible presence of Δ(1232) isobar in He-3 (2)
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FIGURES
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 Triton beta decay  Polarized DIS on He-3

FIG. 1. This figure demonstrates the correspondence between the Feynman diagrams describing

the two-body exchange currents involving the ∆ isobar which appear in calculations of the triton

beta decay and the diagrams involving the n → ∆0 and p → ∆+ transitions which contribute to

the polarized DIS on 3He.
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• The contribution of  Δ-isobar to g13He(x,Q2):

Possible presence of Δ(1232) isobar in He-3 (3) 
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one obtains the following estimate for the ratio of the nuclear to nucleon
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3He
1 is realized through Feynman

diagrams involving the non-diagonal interference transitions n → ∆0 and
p → ∆+. This requires new spin structure functions gn→∆0

1 and gp→∆+

1 , as
well as the effective polarizations Pn→∆0 and Pp→∆+. Taking into account
the interference transitions, the spin structure functions g

3He
1 and g

3H
1 can be

written as
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3He
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n
1 (x/y,Q
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∆fp/3He(y)g̃

p
1(x/y,Q
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8+ 2Pn→∆0gn→∆0

1 + 4Pp→∆+gp→∆+

1 ,

g
3H
1 =

∫ 3

x

dy

y
∆fn/3He(y)g̃

p
1(x/y,Q

2) +
∫ 3

x

dy

y
∆fp/3He(y)g̃

n
1 (x/y,Q

2)

− 2Pn→∆0gp→∆+

1 − 4Pp→∆+gn→∆0

1 . (11)

The minus sign in front of the interference terms in the expression for g
3H
1

originates from the sign convention Pn→∆0 ≡ Pn→∆0/3He = −Pp→∆+/3H and
Pp→∆+ ≡ Pp→∆+/3He = −Pn→∆0/3H.

The interference structure functions can be related to gp1 and gn1 within the
quark parton model using the general structure of the SU(6) wave functions
[23]

gn→∆0

1 = gp→∆+

1 =
2
√
2

5

(

gp1 − 4gn1
)

. (12)

This simple relationship is valid in the range of x and Q2 where the contribu-
tion of sea quarks and gluons to gN1 can be safely omitted, i.e. at 0.5 ≤ Q2 ≤ 5
GeV2 and 0.2 ≤ x ≤ 0.8 if the parametrization of Ref. [13] is used.

In principle, the effective polarizations of the interference contributions
Pn→∆0 and Pp→∆+ can be calculated using a 3He wave function that includes
the ∆ resonance. This is an involved computational problem. Instead, we
chose to find Pn→∆0 and Pp→∆+ by requiring that the use of the 3He and 3H
structure functions of Eq. (11) gives the experimental ratio of the nuclear to
nucleon Bjorken sum rules (7). Substituting Eq. (11) into Eq. (7) yields

−2
(

Pn→∆0+2Pp→∆+

)

∫ 1
0 dx

(

gn→∆0

1 (x) + gp→∆+

1 (x)
)

Γp − Γn
= 0.956−0.921

Γ̃p − Γ̃n

Γp − Γn
.

(13)
Next, we use Eq. (12) to relate the interference structure functions to the
off-shell modified proton and neutron spin structure functions. The latter
are proportional to the on-shell nucleon spin spin structure function in the
model of Ref. [11]. Thus, using the parametrization of [13] one can find the
first moments Γ̃N and ΓN . At Q2 = 4 GeV2, we obtain Γp = 0.151 and
Γn = −0.060 for on-shell nucleons; Γ̃p = 0.147 and Γ̃n = −0.060 for off-shell
nucleons (when the off-shell effects are present in the range 0.2 ≤ x ≤ 0.7).

Using Eqs. (12,13) and the calculated first moments, we find for the nec-
essary combination of the effective polarizations:

2
(

Pn→∆0 + 2Pp→∆+

)

= −0.025 . (14)
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• The new interference structure functions can be estimated using SU(6) wave 
functions, Close, Thomas, PLB 212 (1988) 227; Boros, Thomas, PRD 60 (1999) 074017
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• Requiring that theory reproduces the experimental value of gA|triton/gA, we 
determine the effective polarizations:
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the ∆ resonance. This is an involved computational problem. Instead, we
chose to find Pn→∆0 and Pp→∆+ by requiring that the use of the 3He and 3H
structure functions of Eq. (11) gives the experimental ratio of the nuclear to
nucleon Bjorken sum rules (7). Substituting Eq. (11) into Eq. (7) yields

−2
(

Pn→∆0+2Pp→∆+

)

∫ 1
0 dx

(

gn→∆0

1 (x) + gp→∆+

1 (x)
)

Γp − Γn
= 0.956−0.921

Γ̃p − Γ̃n

Γp − Γn
.

(13)
Next, we use Eq. (12) to relate the interference structure functions to the
off-shell modified proton and neutron spin structure functions. The latter
are proportional to the on-shell nucleon spin spin structure function in the
model of Ref. [11]. Thus, using the parametrization of [13] one can find the
first moments Γ̃N and ΓN . At Q2 = 4 GeV2, we obtain Γp = 0.151 and
Γn = −0.060 for on-shell nucleons; Γ̃p = 0.147 and Γ̃n = −0.060 for off-shell
nucleons (when the off-shell effects are present in the range 0.2 ≤ x ≤ 0.7).

Using Eqs. (12,13) and the calculated first moments, we find for the nec-
essary combination of the effective polarizations:

2
(

Pn→∆0 + 2Pp→∆+

)

= −0.025 . (14)

9
• g13He(x,Q2) including the effects of the nucleon spin depolarization, binding, 
Fermi motion, off-shellness, and the intrinsic Δ-isobar:

Note that Eq. (14) gives a value that is very similar to the one reported in
our original publication [22].

Equations (11,12,14) enable one to write an explicit expression for the
3He spin structure function, which takes into account the additional Feynman
diagrams corresponding to the non-diagonal interference n → ∆0 and p →
∆+ transitions (see Fig. 1 of [22]) and which complies with the experimental
value of the ratio of the Bjorken sum rules (7):

g
3He
1 =

∫ A

x

dy

y
∆fn/3He(y)g̃

n
1 (x/y,Q

2) +
∫ A

x

dy

y
∆fp/3He(y)g̃

p
1(x/y,Q

2)

− 0.014
(

g̃p1(x,Q
2)− 4g̃n1 (x,Q

2)
)

. (15)

Note that in our model for the contribution of the ∆ isobar to g
3He
1 , the last

term in Eq. (15) is strictly valid and included only in the region 0.2 ≤ x ≤ 0.8.
The results of the calculation of g

3He
1 at Q2 = 4 GeV2 based on Eq. (15)

are presented in Fig. 2 as a solid curve. They should be compared to g
3He
1

obtained from Eq. (4) (dash-dotted curve) and to g
3He
1 obtained from Eq. (2)

(dashed line). The neutron spin structure function, gn1 , is given by the dotted
curve. One can see from Fig. 2 that the presence of the ∆(1232) isobar in
the 3He wave function works to decrease g

3He
1 relative to the prediction of

Eq. (4). This decrease is 12% at x = 0.2 and increases at larger x, peaking
for x ≈ 0.46, where gn1 changes sign.

Equation (15) describes the nuclear effects of the nucleon spin depolariza-
tion and the presence of non-nucleon degrees of freedom in the 3He ground-
state wave function and is based on the convolution formula (1). Since the
convolution formalism implies incoherent scattering off nucleons and nucleon
resonances of the target, coherent nuclear effects present at small values of
Bjorken x are ignored. In the next section we demonstrate the role played
by two coherent effects, nuclear shadowing and antishadowing, in DIS on
polarized 3He.

4 Nuclear shadowing and antishadowing

At high energies or small Bjorken x, the virtual photon can interact coher-
ently with several nucleons in the nuclear target. This is manifested in a
specific behaviour of nuclear structure functions that cannot be accommo-
dated by the convolution approximation. In particular, by studying DIS of

10



Possible presence of Δ(1232) isobar in He-3 (4)

8
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Figure 2: The spin structure function g
3He
1 obtained from Eq. (15) (solid

curve), Eq. (4) (dash-dotted curve), and Eq. (2) (dashed curve). The free
neutron spin structure function gn1 is shown by the dotted curve. For all
curves Q2=4 GeV2.

muons on a range of unpolarized nuclear targets, the NMC collaboration [24]
demonstrated that the ratio 2FA

2 /(AF
D
2 ) deviates significantly from unity:

it is smaller than unity for 0.0035 ≤ x ≤ 0.03− 0.07 and is larger than unity
for 0.03 − 0.07 ≤ x ≤ 0.2. The depletion of the ratio 2FA

2 /(AF
D
2 ) is called

nuclear shadowing, while the enhancement is termed nuclear antishadowing.
Both of the effects break down the convolution approximation.

Quite often nuclear targets are used in polarized DIS experiments. While
these experiments do not reach such low values of x as the unpolarized fixed
target experiments, where nuclear shadowing is important, the antishadowing
region is still covered. In the absence of a firm theoretical foundation, nuclear
shadowing and antishadowing have been completely ignored in the analysis

11
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Nuclear shadowing in g13He(x,Q2)

9

• The small-x coherent nuclear effects of shadowing and antishadowing have 
so far been ignored in analyses of DIS of polarized nuclear targets. 

• In the target rest frame, the photon interacts coherently with all target 
nucleons by fluctuating into heff → the destructive interference of scattering 
amplitudes with N=1, 2, and 3 nucleons leads to the suppression of the 
nuclear cross section:

of the DIS data on polarized nuclei. The prime motivation of this section is
to demonstrate that these two effects are quite significant and do affect the
extraction of the nucleon spin functions from the nuclear data.

The physical picture of nuclear shadowing in DIS is especially transparent
in the target rest frame. At high energy, the incident photon interacts with
hadronic targets by fluctuating into hadronic configurations |hk〉, long before
it hits the target:

|γ∗〉 =
∑

k

〈hk|γ∗〉|hk〉 , (16)

where “k” is a generic label for the momentum and helicity of the hadronic
fluctuation hk. Thus, the total cross section for virtual photon-nucleus scat-
tering can be presented in the general form

σtot
γ∗A =

∑

k

|〈hk|γ∗〉|2σtot
hkA

. (17)

Here |〈hk|γ∗〉|2 is the probability of the fluctuation |γ〉 → |hk〉. In obtaining
Eq. (17) from Eq. (16) we assumed that the fluctuations hk do not mix during
the interaction. In general, this is not true since various configurations |hk〉
contribute to the expansion (16) and those states are not eigenstates of the
scattering matrix, i.e. they mix. However, one can replace the series (16)
by an effective state |heff〉 with the mass M2

eff ≈ Q2 that interacts with the
nucleons of the nuclear target with the effective cross section σeff . Within
such an approximation, Eq. (17) is valid and becomes

σtot
γ∗A = |〈heff |γ∗〉|2σtot

heffA
. (18)

Since the effective hadronic fluctuation heff can interact coherently with sev-
eral nucleons of the target, σtot

heffA
< Aσtot

heffN
, which leads to σtot

γ∗A < Aσtot
γ∗N

and to shadowing of the nuclear structure functions. The approximation by
a single effective state (see Eq. (18)) was used to estimate the nuclear shad-
owing correction to spin structure functions of deuterium [25], 3He [17, 26],
7Li [26], and 6LiD [27].

By definition, the spin structure function g
3He
1 can be expressed as

g
3He
1 ∝ σ↑↓

γ∗A − σ↑↓
γ∗A ∝ σ↑↑

heffA
− σ↑↓

heffA
, (19)

where σ↑↑
heffA

(σ↑↓
heffA

) is the cross section for the scattering when the helicities
of the projectile and the nucleus are parallel (antiparallel). The cross sections

12

antiparallel helicities is obtained from Eq. (31) by inverting the helicity of
the target.

Next we introduce cross sections ∆σ and σ

σ↑↑
n,p ≡ σ +

1

2
∆σn,p ,

σ↑↓
n,p ≡ σ −

1

2
∆σn,p . (32)

Here we do not distinguish between the spin-averaged cross sections for pro-
tons and neutrons.

Using Eqs. (31,32) the difference between the heff -3He scattering cross
sections with parallel and antiparallel helicities can be presented in the form

∆σheffA ≡ σ↑↑
heffA

− σ↑↓
heffA

= Pn∆σn + 2Pp∆σp

−
σeff

4πB

(

∆σnΦn +∆σpΦp

)

+
σ2
eff

48π2(α3He +B)2
∆σn . (33)

Several remarks concerning Eq. (33) are in order here. Firstly, Pn and Pp are
effective proton and neutron spin polarizations defined by Eq. (3). Secondly,
the nuclear shadowing correction to ∆σheffA, which is given by the second
line of Eq. (33), is determined by the effective spin-averaged cross section
σeff introduced in Sect. 4. Thirdly, the nuclear shadowing correction due to
triple scattering, given by the last term in Eq. (33), is small. As discussed
in Sect. 4, our numerical analysis demonstrated that the calculations with
the exact, including higher partial waves, and highly simplified, where only
the neutron is polarized, wave functions of 3He give very close results for
the nuclear shadowing correction. Thus, to estimate the triple scattering
contribution (last term in Eq. (33)), it is safe to use a simple Gaussian ansatz
for the 3He ground-state wave function with α3He = 27 GeV−2 and assume
that only the neutron is polarized [17]. Fourthly, the main effect of nuclear
shadowing comes from the double scattering terms (proportional to Φn and
Φp) which need to be carefully evaluated.

The functions Φn and Φp are defined as

Φn =
∑

s1,s2

∫

∏

i

d3$ri
(

|Ψ↑($rn, ↑;$rp, s1;$rp′, s2)|2 − |Ψ↑($rn, ↓;$rp, s1;$rp′, s2)|2
)

×

e−(!rn⊥−!rp⊥)2/(4B) cos∆(zn − zp) ,

Φp =
∑

s1,s2

∫

∏

i

d3$ri
(

|Ψ↑($rn, s1;$rp, ↑;$rp′, s2)|2 − |Ψ↑($rn, s1;$rp, ↑;$rp′, s2)|2
)

×

26

• Using the Gribov-Glauber shadowing formalism: 

Effective cross section driven by spin-
dependent diffraction or diffraction due to 
Pomeron-Reggeon interference - unknown Calculated using the ground-state 3He wf



Nuclear antishadowing in g13He(x,Q2)
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• In unpolarized DIS on nuclear targets, the suppression of the nuclear cross 
section due to shadowing is followed by some enhancement (antishadowing). 

• We assume the same for g13He(x,Q2) and requite that both effects 
compensate each other in the Bjorken sum rule:

σ↑↑
heffA

and σ↑↓
heffA

can be calculated using the standard Gribov-Glauber mul-

tiple scattering formalism. Within this approach, σ↑↑
heffA

and σ↑↓
heffA

receive
contributions from the virtual photon scattering on each nucleon, each pair
of nucleons and all three nucleons of the target. The first kind of contribu-
tion corresponds to incoherent scattering on the nucleons and leads to g

3He
1

as given by Eq. (4). The simultaneous, coherent scattering on pairs of nucle-
ons and all three of them results in the shadowing correction to g

3He
1 , δg

3He
1 .

Detailed calculations of δg
3He
1 are presented in Appendix A. Thus, including

the nuclear shadowing correction, the spin structure function of 3He reads

g
3He
1 =

∫ 3

x

dy

y
∆fn/3He(y)g̃

n
1 (x/y) +

∫ 3

x

dy

y
∆fp/3He(y)g̃

p
1(x/y)

−0.014
(

g̃p1(x)− 4g̃n1 (x)
)

+ ash(x)gn1 (x) + bsh(x)gp1(x) , (20)

where ash and bsh are functions of x and Q2 and are calculated using a
particular model for σeff and a specific form of the 3He ground-state wave
function.

The present accuracy of fixed target polarized DIS experiments on nuclear
targets is not sufficient for dedicated studies of nuclear shadowing. Thus, one
can only use information obtained from unpolarized DIS on nuclei. All of
those experiments – NMC at CERN, E139 at SLAC, BCDMS and E665 at
Fermilab – demonstrated that nuclear shadowing at 10−4 ≤ x ≤ 0.03− 0.07
is followed by some antishadowing at 0.03− 0.07 ≤ x ≤ 0.2. It is natural to
assume a similar pattern for polarized DIS on 3He. Thus, Eq. (20) can be
generalized as

g
3He
1 =

∫ 3

x

dy

y
∆fn/3He(y)g̃

n
1 (x/y) +

∫ 3

x

dy

y
∆fp/3He(y)g̃

p
1(x/y)

−0.014
(

g̃p1(x)− 4g̃n1 (x)
)

+ a(x)gn1 (x) + b(x)gp1(x) , (21)

where a (b) coincide with ash (bsh) in the nuclear shadowing region of Bjorken
x and model antishadowing at larger x. Since the shadowing contribution in
Eq. (20) breaks the equivalence of the theoretical and experimental values
for the ratio of the nuclear to nucleon Bjorken sum rules, one can reinstate
the equivalence by a suitable choice of antishadowing. Thus, we model anti-
shadowing by requiring that Eq. (21) and its 3H counterpart give the correct
ratio in Eq. (7). Substituting Eq. (21) into Eq. (7), we obtain the following
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Figure 3: The coefficient a entering Eq. (21) that describes nuclear shadowing
and antishadowing corrections. The solid curve corresponds to x0 = 0.03;
the dashed curve corresponds to x0 = 0.07.

the Pomeron and Reggeon exchanges (there is only the Pomeron exchange in
the present work) for the virtual photon-nucleon interaction, or the model of
[31], where antishadowing is a consequence of the virtual photon scattering
off the pion cloud of the nucleus.

Using our calculations for the coefficients a and b, we present the most
comprehensive result for the 3He spin structure function g

3He
1 based on Eq. (21)

in Fig. 4. The solid curve includes all of the effects discussed above: nucleon
spin depolarization, Fermi motion and binding effects, the presence of the ∆
isobar in the 3He wave function, and nuclear shadowing and antishadowing.
On the chosen scale, the results of the calculations with the two different
cross-over points x0 are indistinguishable and are shown by the same solid
curve. This should be compared to the calculation of g

3He
1 based on Eq. (2)
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Calculated using Gribov-Glauber model 
for small x < 0.03-0.07 and modeled for 
large x →

The hight and shape of antishadowing 
depends on the assumed cross-point x0.



Full result for g13He(x,Q2)
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Figure 4: The full calculation of g
3He
1 including nuclear shadowing and an-

tishadowing based on Eq. (21) (two solid curves) compared to the result of
Eq. (2) (dashed curve) and to gn1 (dotted curve).

(dashed curve) and to the free neutron spin structure function gn1 (dotted
curve).

The comparison between the solid and the dashed curves is very impor-
tant and constitutes one of the main results of the present work. So far, in
the analysis of all experiments on polarized DIS on polarized 3He – the E142
and E154 experiments at SLAC and the HERMES experiment at DESY –
it was assumed that the 3He spin structure function g

3He
1 can be represented

well by Eq. (2). However, the sizable difference between the full calculation
based on Eq. (21) and the one based on Eq. (2) indicates that it is important
to treat all the relevant nuclear effects equally carefully. In the nuclear shad-
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Extraction of neutron g1n(x,Q2) from 3He data
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• Correction factor due to Δ isobar, 
shadowing and antishadowing:
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Figure 5: The ratio gn1 /g
n
1 exp based on Eq. (24), which demonstrates how the

HERMES [4] and E154 [5] values for gn1 exp should be corrected to include
nuclear shadowing, antishadowing and the ∆ isobar effects. The statistical
uncertainty of gn1 exp contributes to the uncertainty of our predictions for
gn1 /g

n
1 exp, which is shown by vertical lines.

The effect of the ∆ on the ratio gn1 /g
n
1 exp is much more dramatic. If we

form the ratio gn1 /g
n
1 exp using the results presented in Fig. 6, its shape is

quite similar to the tendency presented in Fig. 5: gn1 /g
n
1 exp dips below unity

for 0.2 ≤ x < 0.4 and rises above unity for x > 0.5. However, the ratio
gn1 /g

n
1 exp exhibits extremely rapid changes from being large and negative to

large and positive in the interval 0.4 < x < 0.5, where gn1 changes sign. This
effect is not seen in Fig. 5, where the discrete values of gn1 exp are never close
enough to zero. In the future, experimental studies of gn1 exp near its zero
would provide a very sensitive test of our model for the contribution of the
∆ isobar to g

3He
1 .

20

by the ratio of gn1 based on Eq. (23) to gn1 exp

gn1
gn1 exp

=
Pn + gp1/g

n
1 exp

(

0.014− b(x)
)

Pn + 0.056 + a(x)
. (24)

Note that the coefficients 0.014 and 0.056 should be set to zero for x < 0.2
and x > 0.8. By definition, the coefficients a and b are equal to zero for
x > 0.2.

The results of the application of Eq. (24) to gn1 exp reported by the E154
and HERMES Collaborations are presented in Fig. 5. We present calculations
for the case, when x0 = 0.07. For simplicity we assumed that the functions a
and b entering Eq. (24) and describing the amount of nuclear shadowing and
antishadowing do not vary appreciably with Q2. This enabled us to use our
results for a and b presented in the previous section (see Fig. 3). The proton
spin structure function gp1 was evaluated at the appropriate x and Q2 using
the parametrization of [13]. Also note that while the values of x and Q2 are
correlated for the HERMES data, the E154 Collaboration has evolved their
data to the common scale Q2 = 5 GeV2.

One can see from Fig. 5 that in the region of nuclear shadowing, 10−4 ≤
x ≤ x0, ignoring nuclear shadowing would lead one to overestimate gn1 . For
the lowest-x experimental data points, this effect is of the order 4%. At
larger x, x0 ≤ x ≤ 0.2, the inclusion of nuclear antishadowing increases gn1 .
For instance, the increase is 7% at x ≈ 0.12− 0.13, where the antishadowing
correction is maximal. The influence of the ∆ isobar on the extraction of gn1
from the 3He data is even larger: the experimental values for gn1 should be
increased by as much as 15-25%.

It is also interesting to note that the correction associated with the pres-
ence of the ∆ isobar changes the value of Bjorken x, where gn1 changes sign.
Indeed, as can be seen from Eq. (24), gn1 is larger than gn1 exp for x > x0, i.e.
gn1 changes sign at smaller x than gn1 exp. In order to see the magnitude of this
effect, we analyze Eq. (24) with gp1 and gn1 given by the parametrization of
Ref. [13]. Note that gn1 obtained in Ref. [13] was fitted to the experimental
data without the correction associated the ∆ isobar and, thus, corresponds
to gn1 exp. Figure 6 presents gn1 based on Eq. (24) as a solid curve and the
free neutron spin structure function gn1 exp as a dashed curve. The two curves
correspond to Q2=4 GeV2. One can see from Fig. 6 that for a given choice
of Q2 and shapes of gn1 and gp1, the presence of the ∆ shifts the point where
gn1 changes sign, from 0.46 to 0.43.
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Extraction of neutron g1n(x,Q2) from 3He data (2)

13

• g1n(x,Q2) from

by the ratio of gn1 based on Eq. (23) to gn1 exp

gn1
gn1 exp

=
Pn + gp1/g

n
1 exp

(

0.014− b(x)
)

Pn + 0.056 + a(x)
. (24)

Note that the coefficients 0.014 and 0.056 should be set to zero for x < 0.2
and x > 0.8. By definition, the coefficients a and b are equal to zero for
x > 0.2.

The results of the application of Eq. (24) to gn1 exp reported by the E154
and HERMES Collaborations are presented in Fig. 5. We present calculations
for the case, when x0 = 0.07. For simplicity we assumed that the functions a
and b entering Eq. (24) and describing the amount of nuclear shadowing and
antishadowing do not vary appreciably with Q2. This enabled us to use our
results for a and b presented in the previous section (see Fig. 3). The proton
spin structure function gp1 was evaluated at the appropriate x and Q2 using
the parametrization of [13]. Also note that while the values of x and Q2 are
correlated for the HERMES data, the E154 Collaboration has evolved their
data to the common scale Q2 = 5 GeV2.

One can see from Fig. 5 that in the region of nuclear shadowing, 10−4 ≤
x ≤ x0, ignoring nuclear shadowing would lead one to overestimate gn1 . For
the lowest-x experimental data points, this effect is of the order 4%. At
larger x, x0 ≤ x ≤ 0.2, the inclusion of nuclear antishadowing increases gn1 .
For instance, the increase is 7% at x ≈ 0.12− 0.13, where the antishadowing
correction is maximal. The influence of the ∆ isobar on the extraction of gn1
from the 3He data is even larger: the experimental values for gn1 should be
increased by as much as 15-25%.

It is also interesting to note that the correction associated with the pres-
ence of the ∆ isobar changes the value of Bjorken x, where gn1 changes sign.
Indeed, as can be seen from Eq. (24), gn1 is larger than gn1 exp for x > x0, i.e.
gn1 changes sign at smaller x than gn1 exp. In order to see the magnitude of this
effect, we analyze Eq. (24) with gp1 and gn1 given by the parametrization of
Ref. [13]. Note that gn1 obtained in Ref. [13] was fitted to the experimental
data without the correction associated the ∆ isobar and, thus, corresponds
to gn1 exp. Figure 6 presents gn1 based on Eq. (24) as a solid curve and the
free neutron spin structure function gn1 exp as a dashed curve. The two curves
correspond to Q2=4 GeV2. One can see from Fig. 6 that for a given choice
of Q2 and shapes of gn1 and gp1, the presence of the ∆ shifts the point where
gn1 changes sign, from 0.46 to 0.43.
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Figure 6: The neutron spin structure function gn1 based on Eq. (24) (solid
curve) compared to the case based on the parametrization of Ref. [13] (dashed
curve).

6 An
1 from the 3He data at large x

In this section we derive the expression necessary to extract the neutron
asymmetry An

1 from the 3He data, which takes into account the presence of
the ∆ isobar in the 3He wave function. This calculation is motivated by
the E99-117 experiment that is currently under way at TJNAF (USA) [32].
Using DIS on polarized 3He, the neutron asymmetry An

1 will be extracted
from the 3He asymmetry A

He

1 , which is measured with high accuracy in the
large-x region, 0.33 ≤ x ≤ 0.63.

The DIS asymmetry AT
1 for any target T is proportional to the spin
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Summary
l Comprehensive picture of nuclear effects in DIS on polarized He-3 over a 
wide range of x, 10-4 < x < 0.8: nucleon spin depolarization, presence of Δ 
isobar, Fermi motion and binding, nuclear shadowing and antishadowing.  

l Nucleon spin depolarization, present for all x. Especially important at 
x=0.4-0.5, where g1n ≈ 0. Well-understood and used in analyses of He-3 data 
to extract the neutron g1n. 
  
l Presence of Δ isobar, present for all x, but modeled here only for valence 
quarks, 0.2 < x < 0.8: 15-25% effect on g13He and g1n ; lowers x, where g1n 
changes sign. 

l Shadowing, 10-4 < x < 0.03-0.07, by analogy with unpolarized DIS: 10% 
effect on g13He at 10-4 and 4% effect on g1n at x=0.01. 

l Antishadowing, 0.03-0.07 < x < 0.2, modeled to preserve Bjorken sum rule, 
depends on the cross-over point x0, 7% effect on g13He and g1n at x=0.12-013. 

l Fermi motion and binding become sizable for x > 0.1 (c,f. Ciofi degli Atti, Scopetta, 

Pace, Salme, PRC 48 (1993) R968) and very significant for x > 0.8.  


