Polarized deuteron DIS with spectator tagging

Wim Cosyn

Exploring QCD with Light Nuclei at an EIC Stony Brook Jan 21–24, 2020

Outline

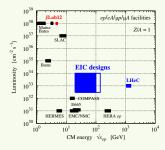
- $lue{}$ Physics with light ions at EIC ightarrow spectator tagging
- Deuteron structure on the light front
- Longitudinal double spin asymmetry in electron-deuteron tagged proton DIS
 - ightarrow neutron spin structure g_{1n}
- Extensions

Why focus on light ions at an EIC?

- Measurements with light ions address essential parts of the EIC physics program
 - neutron structure
 - nucleon interactions
 - coherent phenomena
- Light ions have unique features
 - polarized beams
 - breakup measurements & tagging
 - ▶ first principle theoretical calculations of initial state
- Intersection of two communities
 - high-energy scattering
 - ▶ low-energy nuclear structure

Use of light ions for high-energy scattering and QCD studies remains relatively unexplored

EIC design characteristics (for light ions)



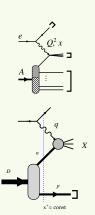
DIS at $x \sim 10^{-3} - 10^{-1}$, $Q^2 \le 100 \text{GeV}^2$

• CM energy $\sqrt{s_{eA}} = \sqrt{Z/A} \ 20 - 100 \text{GeV}$

- High luminosity enables probing/measuring
 - exceptional configurations in target
 - multi-variable final states
 - polarization observables
 - Forward detection of target beam remnants
 - diffractive and exclusive processes
 - coherent nuclear scattering
 - nuclear breakup and tagging
 - forward detectors integrated in designs

- Polarized light ions
 - ▶ ³He, d @ eRHIC
 - ► spin structure, polarized EMC, tensor pol, ...

Theory: high-energy scattering with nuclei



- Interplay of two scales: high-energy scattering and low-energy nuclear structure. Virtual photon probes nucleus at fixed lightcone time $x^+ = x^0 + x^3$
- Scales can be separated using methods of light-front quantization and QCD factorization
- Tools for high-energy scattering known from *ep*
- Nuclear input: light-front momentum densities, spectral functions, overlaps with specific final states in breakup/tagging reactions
 - ▶ framework known for deuteron, can be extended to ³He
 - still low-energy nuclear physics, just formulated differently

Neutron structure measurements

Needed for flavor separation, singlet vs non-singlet evolution etc.

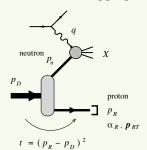
- EIC will measure **inclusive** DIS on light nuclei $[d, {}^{3}\text{He}, {}^{3}\text{H}(?)]$
 - ► Simple, no FSI effects
 - ▶ Compare n from ${}^{3}\text{He} \leftrightarrow p$ from ${}^{3}\text{H}$
 - ► Comparison *n* from 3 He, *d* 3 He \rightarrow talk Maxwell

- Uncertainties limited by nuclear structure effects (binding, Fermi motion, non-nucleonic dof)
- lacksquare 3 He is in particular affected because of intrinsic $\Delta s
 ightarrow talk$ Guzey

If we want to aim for precision, use tools that avoid these complications

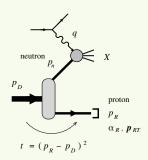
Neutron structure with tagging

Proton tagging offers a way of controlling the nuclear configuration



- Advantages for the deuteron
 - active nucleon identified
 - recoil momentum selects nuclear configuration (medium modifications)
 - ▶ limited possibilities for nuclear FSI, calculable strikman, Weiss PRC 118 \rightarrow talk Weiss
- Suited for colliders: no target material $(p_p \rightarrow 0)$, forward detection, polarization.
 - fixed target CLAS BONuS limited to recoil momenta $\sim 70~\text{MeV}$ \rightarrow talk Keppel

Pole extrapolation for on-shell nucleon structure



- Allows to extract free neutron structure
 - ▶ Recoil momentum p_R controls off-shellness of neutron $t' \equiv t m_N^2$
 - Free neutron at pole $t-m_N^2 \to 0$: "on-shell extrapolation"
 - ► Small deuteron binding energy results in small extrapolation length
 - ► Eliminates nuclear binding and FSI effects [Sargsian, Strikman PLB '05]
- lacksquare D-wave suppressed at on-shell point ightarrow neutron \sim 100% polarized
- Precise measurements of neutron (spin) structure at an EIC

Theoretical Formalism

- General expression of SIDIS for a polarized spin 1 target
 - ▶ Tagged spectator DIS is SIDIS in the target fragmentation region

$$\vec{e} + \vec{T} \rightarrow e' + X + h$$

- Dynamical model to express structure functions of the reaction
 - ► First step: impulse approximation (IA) model
 - ► Results for longitudinal spin asymmetries
 - ► FSI corrections (unpolarized [Strikman, Weiss PRC 18], → talk Weiss)
- Light-front structure of the deuteron
 - ► Natural for high-energy reactions as **off-shellness of nucleons** in LF quantization remains **finite**

Polarized spin 1 particle

Spin state described by a 3*3 density matrix in a basis of spin 1 states polarized along the collinear virtual photon-target axis

$$W_D^{\mu\nu} = Tr[\rho_{\lambda\lambda'}W^{\mu\nu}(\lambda'\lambda)]$$

Characterized by 3 vector and 5 tensor parameters

$$S^{\mu} = \langle \hat{W}^{\mu} \rangle$$
, $T^{\mu\nu} = \frac{1}{2} \sqrt{\frac{2}{3}} \langle \hat{W}^{\mu} \hat{W}^{\nu} + \hat{W}^{\nu} \hat{W}^{\mu} + \frac{4}{3} \left(g^{\mu\nu} - \frac{\hat{P}^{\mu} \hat{P}^{\nu}}{M^2} \right) \rangle$

Split in longitudinal and transverse components

$$\rho_{\lambda\lambda'} = \frac{1}{3} \begin{bmatrix} 1 + \frac{3}{2} S_L + \sqrt{\frac{3}{2}} T_{LL} & \frac{3}{2\sqrt{2}} S_T e^{-i(\phi_h - \phi_S)} & \sqrt{\frac{3}{2}} T_{TT} e^{-i(2\phi_h - 2\phi_{T_T})} \\ -\sqrt{3} T_{LT} e^{-i(\phi_h - \phi_{T_L})} & \frac{3}{2\sqrt{2}} S_T e^{-i(\phi_h - \phi_S)} \\ -\sqrt{3} T_{LT} e^{i(\phi_h - \phi_S)} & 1 - \sqrt{6} T_{LL} & \frac{3}{2\sqrt{2}} S_T e^{-i(\phi_h - \phi_S)} \\ -\sqrt{3} T_{LT} e^{i(\phi_h - \phi_{T_L})} & +\sqrt{3} T_{LT} e^{-i(\phi_h - \phi_T)} \end{bmatrix}.$$

■ Can be formulated in **covariant** manner $\rightarrow \rho^{\mu\nu} = \sum_{\lambda\lambda'} \epsilon^{*\mu}(\lambda') \epsilon^{\nu}(\lambda) \rho_{\lambda\lambda'}$

Deuteron light-front wave function

- Up to momenta of a few 100 MeV dominated by NN component
- Can be evaluated in LFQM [Berestetsky, Terentev, Coester,Keister,Polyzou et al.]
- → Overlap with on-shell free two-nucleon state
- One obtains a Schrödinger (non-rel) like eq. for the wave function components, rotational invariance recovered
- Light-front WF obeys baryon and momentum sum rule

$$\Psi_{\lambda}(\boldsymbol{k},\lambda_{p},\lambda_{n}) = \sqrt{E_{k}} \sum_{\lambda_{p}^{\prime} \lambda_{n}^{\prime}} \mathcal{D}_{\lambda_{p} \lambda_{p}^{\prime}}^{\frac{1}{2}} [R_{fc}(k_{1}^{\mu}/m)] \mathcal{D}_{\lambda_{n} \lambda_{n}^{\prime}}^{\frac{1}{2}} [R_{fc}(k_{2}^{\mu}/m)] \Phi_{\lambda}(\boldsymbol{k},\lambda_{p}^{\prime},\lambda_{n}^{\prime})$$

- Differences with non-rel wave function:
 - ▶ appearance of the Melosh rotations to account for light-front quantized nucleon states
 - ▶ **k** is the relative 3-momentum of the nucleons in the light-front boosted rest frame of the free 2-nucleon state (so not a "true" kinematical variable)

Effective neutron spin density matrix

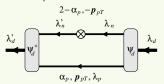
Deuteron LF wavefunction:

$$\Psi_{\lambda_d}(\mathbf{k},\lambda_p,\lambda_n) = \sqrt{E_k} \sum_{\lambda_p' \lambda_n'} \mathcal{D}_{\lambda_p \lambda_p'}^{\frac{1}{2}} [R_{fc}(k_1^{\mu}/m)] \mathcal{D}_{\lambda_n \lambda_n'}^{\frac{1}{2}} [R_{fc}(k_2^{\mu}/m)] \Phi_{\lambda}(\mathbf{k},\lambda_p',\lambda_n')$$

4D covariant formulation: [Kondryatchuk, Strikman '83]

$$\Psi_{\lambda_d}(\alpha_p, \boldsymbol{p}_{pT}, \lambda_p, \lambda_n) = \bar{u}_{\text{LF}}(p_n \lambda_n) \Gamma_{\alpha}(p_p, p_n) v_{\text{LF}}(p_p, \lambda_p) \epsilon_{pn}^{\alpha}(p_{pn}, \lambda_d)$$

Matrix elements of nucleon operators



$$\langle \hat{O}_n \rangle = \int \frac{d\alpha_p}{\alpha_p} d^2 p_p T \frac{2 \mathrm{tr} [\Pi_n \Gamma_n]}{(2 - \alpha_p)} \qquad \qquad \alpha_p = 2 p_p^+ / p_d^+$$

■ Effective neutron spin density matrix (cfr. parton correlators in QCD)

$$\Pi_{n} = (\rho_{pn})^{\alpha\beta}(p_{n} + m)\Gamma_{\alpha}(p_{n} - m)\Gamma_{\beta}(p_{n} + m)$$

Nucleon LF momentum distributions

Can be split into unpolarized, vector and tensor polarization terms:

$$\begin{split} & \Pi_n[\text{unpol}] = \frac{1}{2} (p_n + m) (f_0^2 + f_2^2) \,, \\ & \Pi_n[\text{vector}] = \frac{1}{2} (p_n + m) \$_n (\pmb{S}_d, \pmb{k}) \gamma_5 \,, \\ & \Pi_n[\text{tensor}] = -\frac{1}{2} (p_n + m) (\pmb{k} \, T_d \, \pmb{k}) \frac{3}{k^2} \left(2f_0 + \frac{f_2}{\sqrt{2}} \right) \frac{f_2}{\sqrt{2}} \,. \end{split}$$

Allows for the definition of nucleon light-front momentum distributions

Helicity independent
$$S_d(\alpha_p, \boldsymbol{p}_{pT}) = \frac{\mathrm{tr}[\Pi_n \gamma^+]}{(2 - \alpha_p)^2 p_d^+},$$
 Helicity dependent
$$\Delta S_d(\alpha_p, \boldsymbol{p}_{pT}) = \frac{\mathrm{tr}[\Pi_n (-\gamma^+ \gamma_5)]}{(2 - \alpha_p)^2 p_d^+}$$

- S_d receives contributions from $\Pi_n[\text{unpol}]$ and $\Pi_n[\text{tensor}]$ ΔS_d receives contributions from $\Pi_n[\text{vector}]$
- Tensor polarization does not induce nucleon helicity dependence

Nucleon LF momentum distributions (II)

- LF momentum distributions obey sum rules
 - baryon

$$\begin{split} &\int \frac{d\alpha_p}{\alpha_p} d^2 p_{pT} \mathcal{S}_d(\alpha_p, \pmb{p}_{pT}) [\text{unpol}] = 1 \;, \\ &\int \frac{d\alpha_p}{\alpha_p} d^2 p_{pT} \mathcal{S}_d(\alpha_p, \pmb{p}_{pT}) [\text{tensor}] = 0 \;, \end{split}$$

momentum

$$\begin{split} &\int \frac{d\,\alpha_p}{\alpha_p}\,d^2\,p_{pT}(2\,-\,\alpha_p)S_d(\alpha_p,\pmb{p}_{pT})[\text{unpol}] = 1\,,\\ &\int \frac{d\,\alpha_p}{\alpha_p}\,d^2\,p_{pT}(2\,-\,\alpha_p)S_d(\alpha_p,\pmb{p}_{pT})[\text{tensor}] = 0 \end{split}$$

axial

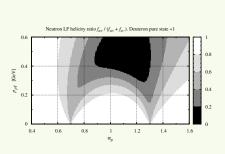
$$\begin{split} \int \frac{d\alpha_p}{\alpha_p} d^2p_{pT} \Delta S_d(\alpha_p, \pmb{p}_{pT}) [\text{vector}] &= S_d^z \frac{g_{Ad}}{2g_A} \,, \\ 1 - \frac{3}{2} \, \omega_2 &= \frac{g_{Ad}}{2g_A} \,. \end{split}$$

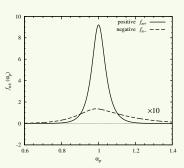
Polarized neutrons in polarized deuteron

■ For a pure +1 deuteron state, we can introduce

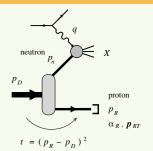
$$f_{n\pm}[\text{pure } +1] = \frac{1}{2}(S_d \pm \Delta S_d)[\text{pure } +1]$$

distributions of neutrons with LF helicity $\pm 1/2$





Tagged DIS with deuteron: model for the IA



 Hadronic tensor can be written as a product of nucleon hadronic tensor with deuteron light-front densities

$$W_D^{\mu\nu}(\lambda',\lambda) = 4(2\pi)^3 \frac{\alpha_R}{2-\alpha_R} \sum_{i=U,z,x,y} W_{N,i}^{\mu\nu} \rho_D^i(\lambda',\lambda) \,, \label{eq:WD}$$

All SF can be written as

$$F_{ij}^k = \{ \text{kin. factors} \} \times \{ F_{1,2}(\tilde{x}, Q^2) \text{ or } g_{1,2}(\tilde{x}, Q^2) \} \times \{ \text{bilinear forms} \}$$

in deuteron radial wave function $f_0(k)$ [S-wave], $f_2(k)$ [D-wave]

- In the IA the following structure functions are $zero \rightarrow sensitive$ to FSI
 - beam spin asymmetry $[F_{IJI}^{\sin\phi_h}]$
 - ► target vector polarized single-spin asymmetry [8 SFs]
 - ► target tensor polarized double-spin asymmetry [7 SFs]

Polarized structure function: longitudinal asymmetry

- On-shell extrapolation of double spin asymmetry
 - Nominator $d\sigma_{||} \equiv \frac{1}{4} \left[d\sigma(+\frac{1}{2}, +1) d\sigma(-\frac{1}{2}, +1) d\sigma(+\frac{1}{2}, -1) + d\sigma(-\frac{1}{2}, -1) \right]$
 - ▶ Two possible denominators: 3-state and 2-state

$$\begin{split} d\sigma_3 &\equiv \tfrac{1}{6} \sum_{\Lambda_e} \left[\mathrm{d}\sigma(\Lambda_e, +1) + \mathrm{d}\sigma(\Lambda_e, -1) + \mathrm{d}\sigma(\Lambda_e, 0) \right] \\ d\sigma_2 &\equiv \tfrac{1}{4} \sum_{\Lambda_e} \left[\mathrm{d}\sigma(\Lambda_e, +1) + \mathrm{d}\sigma(\Lambda_e, -1) \right] \end{split}$$

► Asymmetries: **tensor polarization** enters in 2-state one

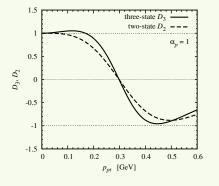
$$\begin{split} A_{||,3} &= \frac{d\,\sigma_{||}}{d\,\sigma_{3}} [\phi_{\textbf{h}}\,\text{avg}] = \frac{F_{LS_{L}}}{F_{T} + \epsilon F_{L}} \\ A_{||,2} &= \frac{d\,\sigma_{||}}{d\,\sigma_{2}} [\phi_{\textbf{h}}\,\text{avg}] = \frac{F_{LS_{L}}}{F_{T} + \epsilon F_{L} + \frac{1}{\sqrt{6}} (F_{T_{LL}T} + \epsilon F_{T_{LL}L})} \end{split}$$

■ Impulse approximation yields in the Bjorken limit $\left[\alpha_p = rac{2p_p^+}{p_D^+}
ight]$

$$A_{\parallel,i} \approx \mathcal{D}_i(\alpha_{p}, |\mathbf{p}_{pT}|) A_{\parallel n} = \mathcal{D}_i(\alpha_{p}, |\mathbf{p}_{pT}|) \frac{D_{\parallel} g_{1n}(\tilde{x}, Q^2)}{2(1 + \epsilon R_n) F_{1n}(\tilde{x}, Q^2)}$$

Nuclear structure factors \mathcal{D}_2 , \mathcal{D}_3

- Quantifies neutron depolarization due to nuclear structure
- Depends on spectator kinematics α_p , p_{pT}
- $\mathcal{D}_2 = \Delta S_d[\text{pure } +1]/S_d[\text{pure } +1]$ has **probabilistic interpretation**
- \blacksquare $\mathcal{D}_3 = \Delta S_d[\text{pure } +1]/S_d[\text{unpol}]$ has no such interpretation.

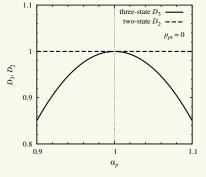


WC, C. Weiss, PLB ('19); in preparation

- Bounds: $-1 \le \mathcal{D}_2 \le 1$
- lacksquare Due to lack of OAM $\mathcal{D}_2\equiv 1$ for $p_T=0$
- Clear contribution from D-wave at finite recoil momenta
- lacksquare \mathcal{D}_3 violates bounds due to lack of tensor pol. contribution
- D₂ closer to unity at small recoil momenta
- 2-state asymmetry is also easier experimentally!!

Nuclear structure factors \mathcal{D}_2 , \mathcal{D}_3

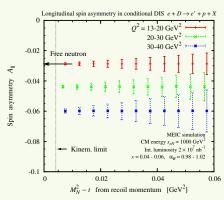
- Quantifies neutron depolarization due to nuclear structure
- Depends on spectator kinematics α_p , p_{pT}
- $\mathcal{D}_2 = \Delta S_d[\text{pure } +1]/S_d[\text{pure } +1]$ has **probabilistic interpretation**
- $\mathcal{D}_3 = \Delta S_d[\text{pure} + 1]/S_d[\text{unpol}]$ has no such interpretation.



WC, C. Weiss, PLB ('19); in preparation

- Bounds: $-1 \leq \mathcal{D}_2 \leq 1$
- lacksquare Due to lack of OAM $\mathcal{D}_2\equiv 1$ for $p_T=0$
- Clear contribution from D-wave at finite recoil momenta
- ${\cal D}_3$ violates bounds due to lack of tensor pol. contribution
- $\mathbb{D}_3 \neq 0$ for $p_T = 0$
- \mathcal{D}_2 closer to unity at small recoil momenta
- 2-state asymmetry is also easier experimentally!!

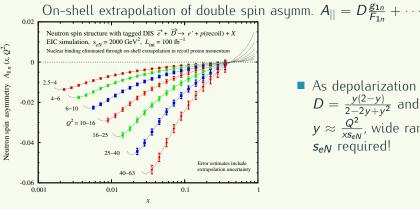
Tagging: simulations of $A_{||}$



JLab LDRD arXiv:1407.3236, arXiv:1409.5768 https://www.jlab.org/theory/tag/

- D-wave suppr. at on-shell point
 → neutron ~ 100% polarized
- Systematic uncertainties cancel in ratio (momentum smearing, resolution effects)
- Statistics requirements
 - ▶ Physical asymmetries $\sim 0.05 0.1$
 - Effective polarization $P_e P_D \sim 0.5$
 - ▶ Luminosity required $\sim 10^{34} \text{cm}^{-2} \text{s}^{-1}$

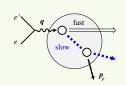
Tagging: simulations of A_{\parallel}

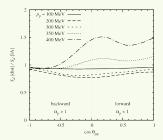


As depolarization factor $D = \frac{y(2-y)}{2-2y+y^2}$ and $y \approx \frac{Q^2}{x_{S-N}}$, wide range of seN required!

- Precise measurement of neutron spin structure
 - separate leading-/higher-twist
 - non-singlet/singlet QCD evolution
 - \blacktriangleright pdf flavor separation $\Delta u, \Delta d. \Delta G$ through singlet evolution
 - ▶ non-singlet $g_{1p} g_{1n}$ and Bjorken sum rule

Final-state interactions in tagging





Strikman, Weiss, PRC7 035209 ('18)

- Issue in tagging: DIS products can interact with spectator → rescattering, absorption
- Dominant contribution at intermediate $x \sim 0.1 0.5$ from "slow" hadrons that hadronize inside nucleus
- Measure fracture functions with EIC
 → talks Ceccopieri, Strikman
- Features of the FSI of slow hadrons with spectator nucleon are similar to what is seen in quasi-elastic deuteron breakup.
- FSI vanish at the pole → pole extrapolation still feasible

Spin 1 SIDIS: General structure of cross section

- To obtain structure functions, enumerate all possible tensor structures that obey hermiticity and transversality condition (qW = Wq = 0)
- Cross section has 41 structure functions,

$$\frac{d\sigma}{dxdQ^2d\phi_{I'}} = \frac{y^2\alpha^2}{Q^4(1-\epsilon)}(F_U + F_S + F_T)d\Gamma_{P_h},$$

ightharpoonup U + S part identical to spin 1/2 case [Bacchetta et al. JHEP ('07)]

$$\begin{split} F_{U} &= F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + \epsilon\cos2\phi_{h}F_{UU}^{\cos2\phi_{h}} + \frac{h}{\sqrt{2\epsilon(1-\epsilon)}}\sin\phi_{h}F_{LU}^{\sin\phi_{h}} \\ F_{S} &= S_{L}\left[\sqrt{2\epsilon(1+\epsilon)}\sin\phi_{h}F_{US_{L}}^{\sin\phi_{h}} + \epsilon\sin2\phi_{h}F_{US_{L}}^{\sin2\phi_{h}}\right] \\ &+ S_{L}h\left[\sqrt{1-\epsilon^{2}}F_{LS_{L}} + \sqrt{2\epsilon(1-\epsilon)}\cos\phi_{h}F_{LS_{L}}^{\cos\phi_{h}}\right] \\ &+ S_{L}\left[\sin(\phi_{h}-\phi_{S})\left(F_{US_{T},T}^{\sin(\phi_{h}-\phi_{S})} + \epsilon F_{US_{T},L}^{\sin(\phi_{h}-\phi_{S})}\right) + \epsilon\sin(\phi_{h}+\phi_{S})F_{US_{T}}^{\sin(\phi_{h}+\phi_{S})} \right. \\ &+ \epsilon\sin(3\phi_{h}-\phi_{S})F_{US_{T}}^{\sin(3\phi_{h}-\phi_{S})} + \sqrt{2\epsilon(1+\epsilon)}\left(\sin\phi_{S}F_{US_{T}}^{\sin\phi_{S}} + \sin(2\phi_{h}-\phi_{S})F_{US_{T}}^{\sin(2\phi_{h}-\phi_{S})}\right)\right] \\ &+ S_{L}h\left[\sqrt{1-\epsilon^{2}}\cos(\phi_{h}-\phi_{S})F_{LS_{T}}^{\cos(\phi_{h}-\phi_{S})} + \\ &+ \sqrt{2\epsilon(1-\epsilon)}\left(\cos\phi_{S}F_{LS_{T}}^{\cos\phi_{S}} + \cos(2\phi_{h}-\phi_{S})F_{LS_{T}}^{\cos(2\phi_{h}-\phi_{S})}\right)\right], \end{split}$$

Spin 1 SIDIS: General structure of cross section

- To obtain structure functions, enumerate all possible tensor structures that obey hermiticity and transversality condition (qW = Wq = 0)
- Cross section has 41 structure functions,

$$\frac{d\sigma}{dx dQ^2 d\phi_{l'}} = \frac{y^2 \alpha^2}{Q^4 (1-\epsilon)} \left(F_U + F_S + F_T \right) d\Gamma_{P_h} \,,$$

▶ 23 SF unique to the spin 1 case (tensor pol.), 4 survive in inclusive (b_{1-4}) [Hoodbhoy, Jaffe, Manohar PLB'88]

$$F_{T} = T_{LL} \left[F_{UT_{LL},T} + \epsilon F_{UT_{LL},L} + \sqrt{2\epsilon(1+\epsilon)} \cos\phi_{h} F_{UT_{LL}}^{\cos\phi_{h}} + \epsilon \cos 2\phi_{h} F_{UT_{LL}}^{\cos 2\phi_{h}} \right]$$

$$+ T_{LL} h \sqrt{2\epsilon(1-\epsilon)} \sin\phi_{h} F_{LT_{LL}}^{\sin\phi_{h}}$$

$$+ T_{L\perp} [\cdots] + T_{L\perp} h [\cdots]$$

$$+ T_{\perp\perp} \left[\cos(2\phi_{h} - 2\phi_{T_{\perp}}) \left(F_{UT_{TT},T}^{\cos(2\phi_{h} - 2\phi_{T_{\perp}})} + \epsilon F_{UT_{TT},L}^{\cos(2\phi_{h} - 2\phi_{T_{\perp}})} \right) \right]$$

$$+ \epsilon \cos 2\phi_{T_{\perp}} F_{UT_{TT}}^{\cos 2\phi_{T_{\perp}}} + \epsilon \cos(4\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(4\phi_{h} - 2\phi_{T_{\perp}})}$$

$$+ \sqrt{2\epsilon(1+\epsilon)} \left(\cos(\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(\phi_{h} - 2\phi_{T_{\perp}})} + \cos(3\phi_{h} - 2\phi_{T_{\perp}}) F_{UT_{TT}}^{\cos(3\phi_{h} - 2\phi_{T_{\perp}})} \right)$$

$$+ T_{\perp\perp} h [\cdots]$$

Nuclear imaging: deuteron tensor polarization

- → Talks Slifer, Long, Kumano
 - Tensor polarization in *D* probes nuclear effects
 - Little explored in high-energy scattering
 - Inclusive b_1 result from HERMES: no conventional nuclear calculation reproduces data
 - Spin 1 targets admit gluon transversity
 - Tagged cross section yields 23 additional structure functions with specific azimuthal dependences [Cosyn, Sargsian, Weiss, in prep.]
 - lacktriangledown T-odd SF [DSA] are zero in impulse approximation ightarrow sensitive to FSI

Extensions for A > 2?

- → talk Scopetta
 - Construction of Poincaré covariant A = 3 states, operators becomes harder due to additional constraints of cluster separability
 - Solution is known: Sokolov packing operators [Sokolov; Lev]
 - For DIS free currents (cfr parton model; leading twist pdfs) obey
 Poincaré covariance constraints in collinear frames [Lev,Pace,Salmé]
 → angular conditions
 - lacksquare Add Sokolov packing operators to currents for A>2 to obey cluster separability
 - Formalism is known, non-trivial calculations need to be carried out

EIC Yellow Paper report

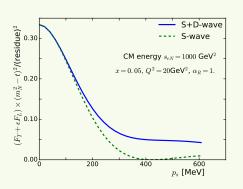
- Working group: tagging & diffraction
 - ► Cosyn (FIU), Hen (MIT), Higinbotham (JLab), Klein (LBL), Stasto (PSU)
- Detector requirements to study these processes, identify benchmark reaction channels
- Get in touch if you can and want to contribute!

Conclusions

- Light ions address important parts of the EIC physics program
- Tagging and nuclear breakup measurements overcome limitations due to nuclear uncertainties in inclusive DIS → precision machine
- Unique observables with polarized deuteron: free neutron spin structure, tensor polarization
- Extraction of nucleon spin structure in a wide kinematic range
- Lots of extensions to be explored!

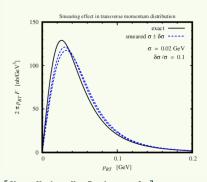
Backup Slides

Unpolarized structure function



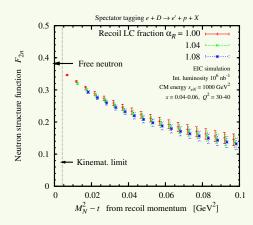
- Extrapolation for $(m_N^2 t) \rightarrow 0$ corresponds to on-shell neutron $F_{2N}(x, Q^2)$, here equivalent to imaginary p_s
- Clear effect of deuteron D-wave, largest in the region dominated by the tensor part of the NN-interaction
- D-wave drops out at the on-shell point

JLEIC: Momentum spread in beam



- Intrinsic beam spread in ion beam "smears" recoil momentum
 - \blacktriangleright transverse momentum spread of $\sigma\approx$ 20 MeV $(\delta\sigma/\sigma\sim$ 10%)
 - p_R (measured) $\neq p_R$ (vertex)
 - Systematic correlated uncertainty, x,Q^2 independent
- Dominant syst. uncertainty at JLEIC, detector resolution much higher than beam momentum spread (diff for eRHIC)
- On-shell extrapolation feasible!!

Tagging: unpolarized neutron structure

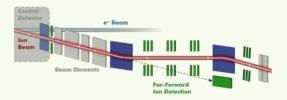


JLab LDRD arXiv:1407.3236, arXiv:1409.5768, https://www.jlab.org/theory/tag/

$$\alpha_R = 2p_R^+/p_D^+$$

- F_{2n} extracted with percent-level accuracy at x < 0.1
- Uncertainty mainly systematic due to intrinsic momentum spread in beam (JLab LDRD project: detailed estimates)
- In combination with proton data non-singlet $F_{2p} F_{2n}$, sea quark flavor asymmetry $\bar{d} \bar{u}$

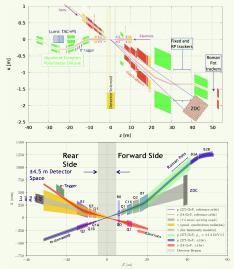
EIC: forward detection system



[not to scale]

- Large acceptance forward detector [concept: P. Nadel-Turonski, Ch. Hyde et al.]
 - ▶ beams collide at small crossing angle 25–50 mrad
 - forward p/n/ions travel through ion beam quadrupole magnets
 - dispersion generated by dipole magnets
 - detector systems: tracking in dipole magnets
 Roman pots for charged (p,ions) forward particles
 zero-degree calorimeters (ZDCs) for neutrals (neutron, photon)
- Major optimization and integration challenge
 - ► Forward particles with range of rigidities (momentum/charge), different from beam
 - Range in ion beam energy
 - ► Geometry of magnets and infrastructure
 - ► More complex than forward detectors at HE colliders [HERA, RHIC, LHC]

EIC: forward detection system



JLEIC IR design: V. Morozov et al 2019, eRHIC IR design, Ch. Montag et al 2019

- IR designs
 - JLEIC and eRHIC design similar
 - Differences: crossing angle 50 [JLEIC] - 25 mrad [eRHIC]; JLEIC secondary focus at RP location
- Forward acceptance and resulotion
 - software framework developed
 - simulations on-going
- Momentum spread in ion beam
 - transverse momentum spreadfew 10 MeV
 - ► smearing effect: $p_T[\text{vertex}] \neq p_T[\text{measured}],$ systematic uncertainty