
Exploring QCD with light nuclei at EIC

Stony Brook University 21-24 January 2020

BEAM OPTICS AND MOMENTUM RESOLUTION IN FORWARD ION DETECTION WITH EIC

CHARLES E. HYDE

PHYSICS CONCEPTS I. DEEP VIRTUAL EXCLUSIVE SCATTERING

- $ep \rightarrow eVN$, $V = \rho, \phi, J/\psi$:
 - Resolve kinematics (Δ_{\perp}) via charged particle decays of Vector meson
 - Detect final proton, or veto N^* via detection of final state
 - $N^* \rightarrow p \pi^0$: $1-P(p)/P_0 > m_{\pi}/M_N = 14\%$
 - $N^* \rightarrow n\pi^*$: Requires large phase space (p,θ) for pion veto or High Resolution ZDC: $40\%/VE \le 4\%$ for $E_n \ge 100$ GeV
- $ep \rightarrow e\gamma p$: Need to detect exclusive proton for high resolution determination of kinematics

PHYSICS CONCEPTS II. SPECTATOR TAGGING

- $eD \rightarrow epX$: Inclusive, Semi-Inclusive, Exclusive, Double-tag...
 - $P_p = \frac{\alpha}{2} P_D \approx \frac{1}{2} P_D$ $(\alpha \approx 1 \pm k_F/M_N)$: Rigidity $K_p = \frac{P_p}{Q_p} \approx \frac{1 \pm k/M}{2} K_D$
- $eHe^3 \rightarrow eppX$:
 - $P_p = \frac{\alpha}{3} P_D \approx \frac{1 \pm 0.2}{3} P_3$
- $eHe^3 \rightarrow edX$:
 - $\bullet P_d \approx \frac{2}{3} P_3$
- $eHe^4 \rightarrow e'He^3 X$
- $eHe^4 \rightarrow e'H^3 X$

Rigidity
$$K_p = \frac{P_p}{Q_p} \approx \left[\frac{P_3}{3}\right] / \left[\frac{P_3}{2}\right] \approx \frac{2}{3} K_3$$

- Rigidity $K_d \approx \frac{4}{3} K_3$ "Super-Exclusive"
- Rigidity $K_3 \approx \frac{3}{4} K_4$
- Rigidity $K_t \approx \frac{3}{2} K_4$ "Super-Exclusive"

PHYSICS CONCEPTS III. NUCLEAR FINAL STATES

$$e^- + AZ \rightarrow e' + A'Z' + \dots$$

Knockout N (P≈q),

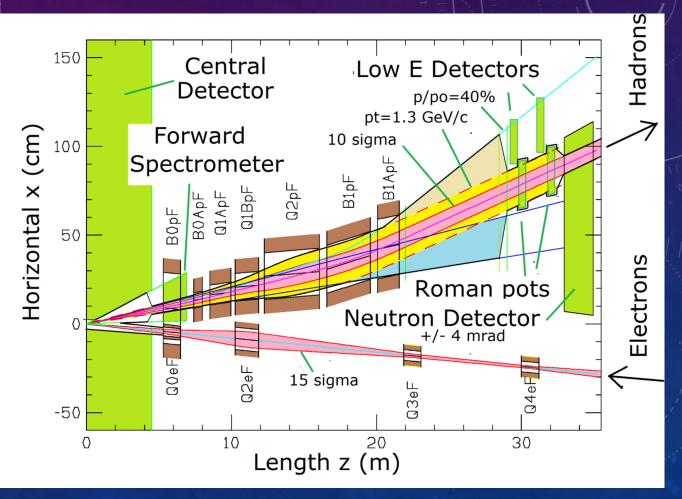
- Fragmentation N,d,... (P≈P_F)
- Evaporation N, d,... (P²≈MkT), kT≈10 MeV
- Evaporation Residue A'Z'
 - Relative Rigidity K'/K $\approx \frac{A'}{Z'} / \frac{A}{Z} = \frac{A'}{A} \cdot \frac{Z}{Z'}$
 - Extreme cases (see BEAGLE Simulations)
 - A' = A-1, Z'=Z \rightarrow K'/K = (A-1)/A = 0.995 for ^{A}Z = 208 Pb
 - A' = A, Z' = Z-1 \rightarrow K'/K = Z/(Z-1) = 1.012 for ^{A}Z = 208 Pb
- Nuclear Fragmentation is as demanding as proton DVCS on small $\delta P_{\rm L}/P_{\rm L}$ acceptance and resolution
 - → Detect lons with rigidity within 1% of beam rigidity

4

BEAM EMITTANCE LIMIT ON DETECTION RESOLUTION FOR

FORWARD IONS

- eRHIC
 (275 GeV p) x (10 GeV e⁻)
 - https://www.bnl.gov/cad /eRhic/
 - 2019/napac19/programagenda MOOHC2


	Nominal Design			Risk Mitigation		
	(with cooling)			(no cooling)		
Species	р	е		р	E	
Bunch frequency [MHz]	112.6			56.3		
Bunch intensity [10^11]	0.6	1.5		1.05	3.0	
Number of bunches	1320			660		
Beam current [A]	1	2.5		0.87	2.5	
Rms norm. emit. h/v [um]	2.7/0.38	391/20		4.1/2.5	391/95	
Rms emittance h/v [nm]	9.2/1.3	20/1		13.9/8.5	20/4.9	
β* h/v [cm]	90/4	42/5		90/5.9	63/10.4	
IP rms beam size h/v [um]	91/7.2			112/22.5		
IR rms angular spread h/v [urad]	101/179	219/143		124/380	179/216	
b-b parameter (/IP) h/v	0.013/0.007	0.064/0.099		0.015/0.005	0.1/0.083	
Rms bunch length [cm]	5	1.9		7	1.9	
Rms energy spread, 10^-4	4.6	5.5		6.6	5.5	
Max space charge parameter	0.004	neglig.		0.001	neglig.	
IBS growth time tr/long, h	2.1/2.0			9.2/10.1		
Polarization, %	80	70		80	70	
Hourglass and crab crossing factor	0.87			0.85		
Peak luminosity [10^33 cm-2s-1]	10.1			4.4		
Integrated luminosity/week, fb ⁻¹	4.51			1.12		

Species	р	e -
RMS emittance $\epsilon(H/V)$ (nm)	9.2/1.3	20/1
β^* H/V (cm)	90/4	42/5
IP RMS beam size H/V (μ m)	91/7.2	112/22
IP RMS Angular Spread H/V (mrad)	0.10/0.2	0.22/0.15
RMS Bunch Length (cm)	5	2
RMS Energy Spread (σ_P/P) (10 ⁻⁴)	4.6	5.5

- $P_A = (275 \text{ GeV/c}) \text{ Z}$
- Downstream Optics non-focusing
- Angular acceptance ± 4mrad |p_T|≤ 1.3 GeV @ 275 GeV |p_T|≤ 0.5 GeV @ 100 GeV

eRHIC IR OPTICS

SEPT 2019

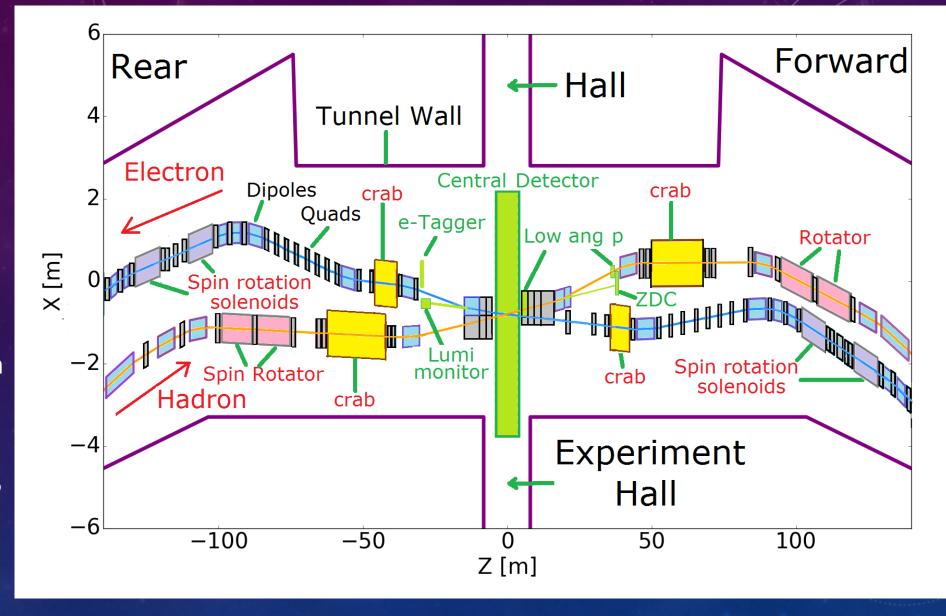
MOMENTUM RESOLUTION AT ROMAN POTS?

MY ANALYSIS FROM GRAPH: NOT EXACT

- $10\sigma_x(RP) \approx 5 \text{ cm} \rightarrow \sigma_x(RP) = 1 \text{cm}$
- $\sigma_{\mathsf{x}}(\mathsf{RP}) = [(\beta)^{\mathsf{RP}} (\epsilon_{\mathsf{H}}) + (\mathsf{D} \bullet \sigma(\delta)^{\mathsf{IP}})^2]^{1/2}$
- $D \approx 40 \text{cm}/60\% = 67 \text{ cm}/100\%$
- $\epsilon_{H} = 10^{-8} \text{ m}$, $\sigma(\delta)^{IP} = 4.6 \cdot 10^{-4} \implies (\beta)^{RP} \approx 10^{4} \text{ m} !!$
- If $[(\beta)^{RP}(\epsilon_H)]^{1/2} = 1$ cm and D = 67 cm \rightarrow Resolution on $\delta = 1$ cm/(67cm) = 1.5% regardless of RP spatial resolution

GAPS IN ACCEPTANCE WITHOUT FOCUSSING

- Without a secondary high-dispersion focus, there are significant gaps in the acceptance as a function of δ , P_T
 - These gaps can be filled by running at different beam energies, BUT:
- DVCS physics requires full acceptance over a broad range in s.
 - M. Defurne, et al, Nature Physics **8** (2017) 1408: Measurements at fixed (Q^2, x_B, Δ^2) & multiple s-values enable separation of $Re[DVCS\dagger BH]$, $Im[DVCS\dagger BH]$, and $|DVCS|^2$ terms
 - Only technique without positrons!


C.Hyde

FOCUSING CONCEPT IN JLEIC IR DESIGN

- Downstream iFFQ triplet + Dipoles captures the beam from the IP focus, and forms a downstream focus (z ≈ 40 m)
 - $D^{RP} \approx 1 \text{ m}$, $(\beta^*)^{RP} \approx 1 \text{ m}$, Magnification = $\langle \theta_H^{RP} | \theta_H^{IP} \rangle \approx -0.5$
 - Intrinsic beam size = $[(\beta)^{RP} (\epsilon_H) + (D \cdot \sigma(\delta)^{IP})^2]^{1/2} = [1 + (4.6)^2]^{1/2} (10^{-4} \text{ m})$ $\sigma_H^{IP} \approx 0.5 \text{ mm}$, dominated by beam energy spread
 - Achievable momentum resolution = $\sigma_H^{IP}/D = 5 \cdot 10^{-4}$
 - Precision DVCS kinematics
 - $\Delta Z = 1$, $\Delta A = 1$ resolution on beam residue across periodic chart (and exotic nuclei)

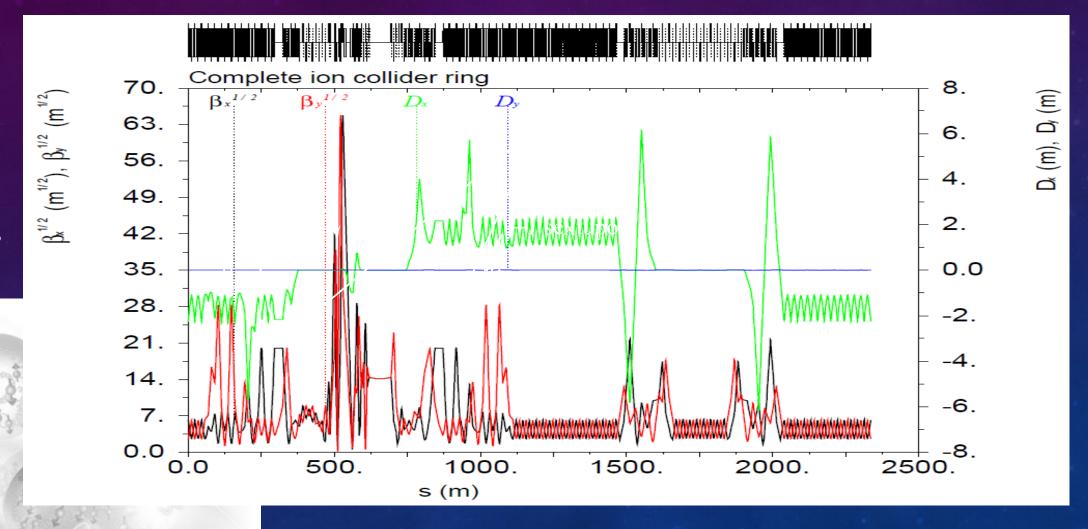
eRHIC BEAMLINE

- Is a focusing forward beam line possible at eRHIC?
 - Adjust IR in range 20 to 80 m
- Crab cavities must be at $(2n+1)\pi/2$ phase relative to IP
- JLEIC Crab Cavities at ±300 m

CONCLUSION

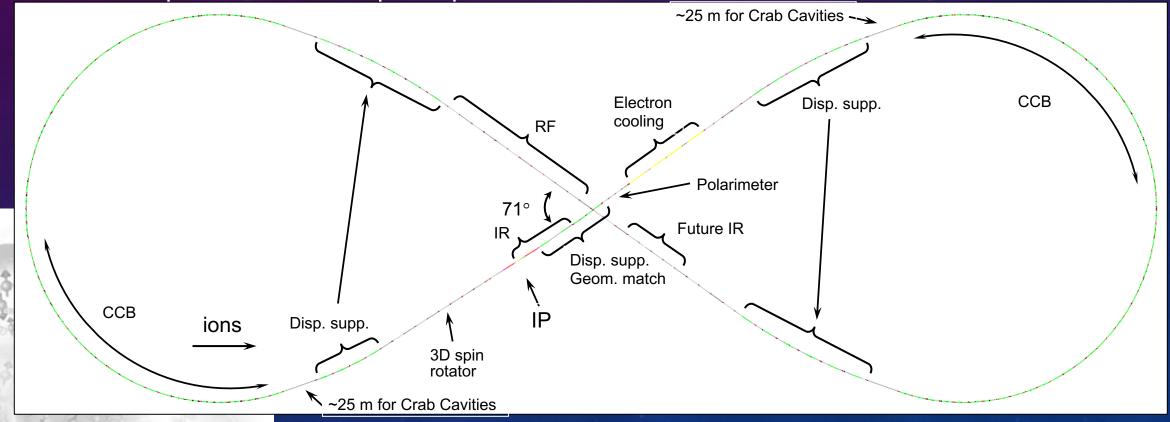
- It is urgent to complete a full review of practical options for the IR design(s).
- The IR design will likely be frozen within this year, and will not be changed for 20 years.
 - Changes to IR magnets after detector design require major changes to central detector and parts of accelerator
 - HERA demonstrated that retrofitting forward optics/detection cannot deliver the full physics program

CONCLUSIONS


- A large variety of Physics topics require large acceptance/high resolution far-forward detection.
 - dK/K from -0.5 to +0.33 to infinity (neutrons, gammas)
 - Current design has -0.4≤ dK/K ≤ ∞ (neutron)
 - Lengthen quads, reduce acceptance to -0.5 ≤ dK/K to create focus at Roman Pot location
- Secondary Focus enhances resolution/acceptance
- Detection inside dipoles needed for vertex resolution on KS->pipi,
 Lambda -> p pi

BACKUP

CFNS: QCD in Light Nuclei at EIC


Ion Collider Ring Optics

JLEIC Ion Collider Ring

- Circumference of 2335.975 m optimized for synchronization
- 200 GeV/c protons

• 6 T $\cos \theta$ dipoles and $\cos 2\theta$ quadrupoles

