Sivers and Qiu-Sterman functions

from SIDIS and Drell-Yan data

Alexey Vladimirov (Regensburg University)

QCD Evolution Workshop 2021

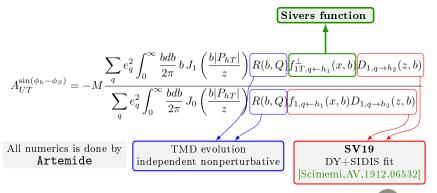
- ▶ We [M.Bury, A.Prokudin, AV] made extraction of Sivers function from SIDIS and DY
- ▶ We fit TSSA using TMD factorization
- ▶ Many smaller studies see [2103.03270]
- ▶ In this talk, I focus on the relation between Qiu-Sterman and Sivers functions

$$A_{UT}^{\sin(\phi_h - \phi_S)} = -M \frac{\displaystyle \sum_q e_q^2 \int_0^\infty \frac{bdb}{2\pi} \, b \, J_1\left(\frac{b|P_{hT}|}{z}\right) R(b,Q) f_{1T,q \leftarrow h_1}^\perp(x,b) D_{1,q \rightarrow h_2}(z,b)}{\displaystyle \sum_q e_q^2 \int_0^\infty \frac{bdb}{2\pi} \, J_0\left(\frac{b|P_{hT}|}{z}\right) R(b,Q) f_{1,q \leftarrow h_1}(x,b) D_{1,q \rightarrow h_2}(z,b)}$$

Universität Regensburg

A. Vladimirov Sivers & QS May 10, 2021 2/22

- We [M.Bury, A. Prokudin, AV] made extraction of Sivers function from SIDIS and DY
- We fit TSSA using TMD factorization
- Many smaller studies see [2103.03270]
- In this talk, I focus on the relation between Qiu-Sterman and Sivers functions



Universität Regensburg

2/22

◆□ → ◆□ → ◆ □ → ◆ □ → A. Vladimirov May 10, 2021

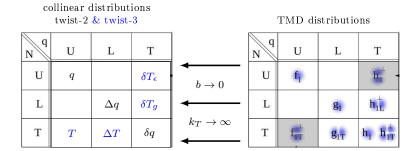
Sivers and Qiu-Sterman functions are related to each other alike unpolarized TMDPDF to unpolarized PDF

collinear distributions twist-2

TMD distributions

TWD distributions							
N q	U	L	Т				
U	$\mathbf{f_1}$		\mathbf{h}_{1}^{\perp}				
L		g ₁	h_{1L}^{\perp}				
Т	f _{1T}	g_{1T}	h_1 h_{1T}^{\perp}				

Sivers and Qiu-Sterman functions are related to each other alike unpolarized TMDPDF to unpolarized PDF

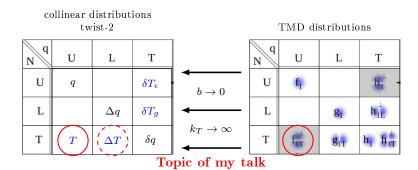


Warning! There is no common labeling for twist-3 functions

イロト イ部ト イミト イミト

A. Vladimirov Sivers & QS May 10, 2021 3 / 22

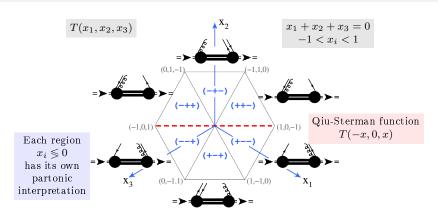
Sivers and Qiu-Sterman functions are related to each other alike unpolarized TMDPDF to unpolarized PDF



Warning! There is no common labeling for twist-3 functions

A. Vladimirov Sivers & QS May 10, 2021 3/22

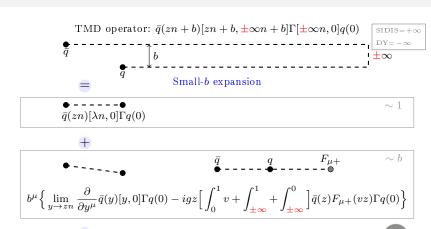
Twist-3 distributions are complicated



Universität Regensburg

Small-b matching at $\sim b$ order

[Scimemi, AV, 1804.08148]



Universität Regensburg

4□ > 4回 > 4 = > 4 = > = 9000

From operators to distributions

▶ Parameterize matrix elements → distributions

$$\langle p, s | g\bar{q}(z_1n)\gamma^+ F_{\mu+}(z_2n)q(z_2n) | p, s \rangle = 2p_+^2 \epsilon_T^{\mu\nu} s_\nu M \int [dx] e^{-ip_+^+ z_i x_i} T(x_1, x_2, x_3)$$

- ► Compute matrix element over OPE
- Use symmetries to simplify

$$T(x_1, x_2, x_3) = T(-x_3, -x_2, -x_1)$$



▶ Obtain

(DY)
$$\Phi_{q-h}^{[\gamma^+]}(x, \mathbf{b}) = f_1(x) + ib_\mu \tilde{s}_T^\mu M \pi T(-x, 0, x) + O(\mathbf{b}^2),$$

(SIDIS)
$$\Phi_{q \leftarrow h}^{[\gamma^+]}(x, \mathbf{b}) = f_1(x) - i b_\mu \tilde{s}_T^\mu M \, \pi T(-x, 0, x) + O(\mathbf{b}^2).$$

Universität Regensburg

6/22

◆□ → ◆□ → ◆ ■ → ◆ ■ → 9 へ ○

A. Vladimirov Sivers & QS May 10, 2021

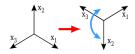
From operators to distributions

Parameterize matrix elements \rightarrow distributions

$$\langle p, s | g\bar{q}(z_1n) \gamma^+ F_{\mu+}(z_2n) q(z_2n) | p, s \rangle = 2 p_+^2 \epsilon_T^{\mu\nu} s_\nu M \int [dx] e^{-ip^+ z_i x_i} T(x_1, x_2, x_3)$$

- Compute matrix element over OPE
- Use symmetries to simplify

$$T(x_1, x_2, x_3) = T(-x_3, -x_2, -x_1)$$



Obtain

(SIDIS)
$$\Phi_{q \leftarrow h}^{[\gamma^{+}]}(x, \boldsymbol{b}) = f_{1}(x) + ib_{\mu}\tilde{s}_{T}^{\mu}M\pi T(-x, 0, x) + O(\boldsymbol{b}^{2}),$$
(SIDIS)
$$\Phi_{q \leftarrow h}^{[\gamma^{+}]}(x, \boldsymbol{b}) = f_{1}(x) - ib_{\mu}\tilde{s}_{T}^{\mu}M\pi T(-x, 0, x) + O(\boldsymbol{b}^{2}).$$

$$f_{1T}^{\perp}(x, \boldsymbol{b})$$

Universität Regensburg イロト イ部ト イミト イミト

Sivers function $(\mathrm{DY}) \qquad f_{1T}^{\perp}(x, \boldsymbol{b}) \; = \; \pi \boldsymbol{\mathcal{I}}$

Qiu-Sterman distribution

(DY)
$$f_{1T}^{\perp}(x, \mathbf{b}) = \pi T(-x, 0, x) + O(\mathbf{b}^2),$$

(SIDIS) $f_{1T}^{\perp}(x, \mathbf{b}) = -\pi T(-x, 0, x) + O(\mathbf{b}^2).$

▶ Result depends on Wilson line's direction

$$f_{1T}^{\perp}[\mathrm{SIDIS}] = -f_{1T}^{\perp}[\mathrm{DY}]$$

▶ This is only the leading term!

Warning! Different notations!

$$T(-x,0,x)\Big|_{\text{here}} = \frac{-1}{\pi} f_{1T}^{\perp(1)}(x)\Big|_{\text{PV20}} = \frac{T_F(x,x)}{2\pi M}\Big|_{\text{EKT20}} = -F_{FT}(x,x)\Big|_{\text{JAM20}}$$

PV20=[Bacchetta,et al,2004.14278] EKT20=[Echevarria,Kang,Terry,2009.10710] JAM20=[Cammarota,et al,2002.08384]

Universität Regensburg

Higher powers in b

[Moos, AV, 2008.01744]

$$f_{1T}^{\perp}(x,b) = \pm \pi \Big\{ T(-x,0,x) + \sum_{n=1}^{\infty} \frac{\left(\frac{x^2 b^2 M^2}{4}\right)^n}{(n+1)!(n-1)!} \int_x^1 \frac{du}{u} \frac{1 + (n-1)u + u^2}{1 - u} \frac{\bar{u}^n}{u^n} T\left(\frac{-x}{u}, 0, \frac{x}{u}\right) \Big\}$$

- No twist-2 contributions
- QS-function at all orders
- ▶ Target-mass corrections are suppressed
- ightharpoonup TMD_{nuclei} \sim TMD_{hadron}

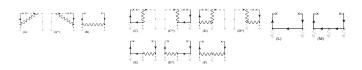
TMD distributions f_{1T}^{\perp} , g_{1T} , h_1^{\perp} , h_{1L}^{\perp}

THE distributions J ₁ T, g ₁ T, w ₁ , w ₁ L									
	Collinear distributions								
1	f(x)	T_3							
b^2	f(x)	T_3	T_4	T_5					
b^4	f(x)	T_3	T_4	T_5	$T_6 \cdots T_6 \cdots$				
b^6	f(x)	T_3	T_4	T_5	$T_6 \cdots$				

Universität Regensburg

Higher perturbative orders

[Scimemi, Tarasov, AV, 1901.04519]



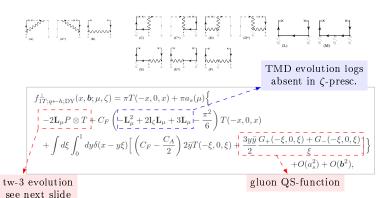
$$\begin{split} & f_{1T;q\leftarrow h;DY}^{\perp}(x,\boldsymbol{b};\mu,\zeta) = \pi T(-x,0,x) + \pi a_s(\mu) \Big\{ \\ & - 2\mathbf{L}_{\mu}P \otimes T + C_F \left(-\mathbf{L}_{\mu}^2 + 2\mathbf{l}_{\zeta}\mathbf{L}_{\mu} + 3\mathbf{L}_{\mu} - \frac{\pi^2}{6} \right) T(-x,0,x) \\ & + \int d\xi \int_0^1 dy \delta(x-y\xi) \Big[\left(C_F - \frac{C_A}{2} \right) 2\bar{y}T(-\xi,0,\xi) + \frac{3y\bar{y}}{2} \frac{G_+(-\xi,0,\xi) + G_-(-\xi,0,\xi)}{\xi} \Big] \Big\} \\ & + O(a_s^2) + O(b^2), \end{split}$$

Universität Regensburg

9 / 22

Higher perturbative orders

[Scimemi, Tarasov, AV, 1901.04519]



Universität Regensburg

9/22

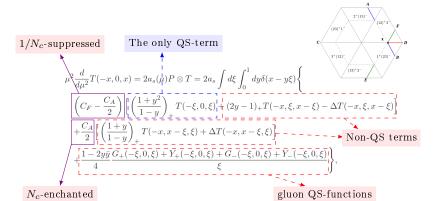
Evolution mixes everything!

$\begin{array}{c} \textbf{1/N_{c}\text{-suppressed}} & \textbf{The only QS-term} \\ \hline \\ & \frac{d}{\sqrt{\mu^{2}}}T(-x,0,x) = 2a_{s}(\mu)P\otimes T = 2a_{s}\int d\xi \int_{0}^{1}dy\delta(x-y\xi) \bigg\{ \\ \hline \\ & \left[\left(C_{F}-\frac{C_{A}}{2}\right)\right] \left[\left(\frac{1+y^{2}}{1-y}\right)_{+}^{+}T(-\xi,0,\xi)\right]^{1} + (2y-1)_{+}T(-x,\xi,x-\xi) - \Delta T(-x,\xi,x-\xi) \bigg] \\ & + \frac{C_{A}}{2}\left[\left(\frac{1+y}{1-y}\right)_{+}^{+}T(-x,x-\xi,\xi) + \Delta T(-x,x-\xi,\xi)\right] \\ & + \frac{1-2y\bar{y}}{2}\frac{G_{+}(-\xi,0,\xi) + Y_{+}(-\xi,0,\xi) + G_{-}(-\xi,0,\xi) + Y_{-}(-\xi,0,\xi)}{\xi} \bigg\}, \end{array}$

Universität Regensburg

A. Vladimirov Sivers & QS May 10, 2021 10 / 22

Evolution mixes everything!



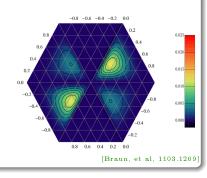
Universität Regensburg

10 / 22

A. Vladimirov May 10, 2021

Sivers function has strong non-QS contribution

- ▶ Only at $b \to 0$
- ▶ Already logarithm term is strongly "non-QS"
- Most probably it explains why Sivers function is "large"
 - ▶ Model calculations show that QS is "small"



How to extract QS function from Sivers function?

- ► Evolution effects cannot be dropped
- \blacktriangleright Mixture with gluon and ΔT is significant
- ▶ There is a method... \rightarrow slide 17.

Universität Regensburg

11/22

A. Vladimirov Sivers & QS May 10, 2021

Common ansatz for TMDs

▶ Unpolarized PDF

$$f_1(x,b) = [C(\ln(b)) \otimes q](x) f_{NP}(x,b)$$

- ightharpoonup C is known up to N^3LO
- ightharpoonup q(x) and $q_q(x)$ are known from DIS, DY, ...
- $ightharpoonup f_{NP}$ is parameterized by 2-5 parameters
- ▶ Sivers function

$$f_{1T}^{\perp}(x,b) = [C(\ln(b)) \otimes T](x) f_{NP}(x,b)$$

- ▶ Incorporates T, ΔT , G^{\pm} each of which is a function of 2 variables
- None of these functions is known
- Practically, no twist-3 evolution code

Common ansatz for TMDs is not practical for Sivers function (Boer-Mulders, worm-gears, pretzelocity)

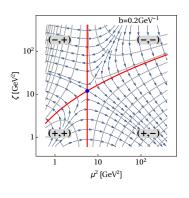
Extract it as a whole NP function, without small-b matching! (which is possible e.g. in ζ-prescription)

Universität Regensburg

12 / 22

イロト イ部ト イミト イミト

Reminder: ζ -prescription



In ζ -prescription a TMD is defined on the top of the equi-evolution line in the (μ, ζ) -evolution plane.

$$F(x,b) = F(x,b;\mu,\zeta(\mu,b))$$

- ► Evolution decouples from the (nonperturbative) TMD distribution (by definition)
- TMDs can be modeled without respect to small-b matching
- Perturbative order of evolution can be any (generally situation like in DIS)

Universität Regensburg

Ansatz for Sivers function

$$f_{1T;q\leftarrow h}^{\perp}(x,b) = N_q \frac{(1-x)x^{\beta_q}(1+\epsilon_q x)}{n(\beta_q,\epsilon_q)} \exp\left(-\frac{r_0+xr_1}{\sqrt{1+r_2x^2b^2}}b^2\right)$$

$$u,\ d,\ s,\ sea(=\bar{u},\bar{d},\bar{s})$$
 Common for all flavors Similar to unpol.

12 free parameters

- $ightharpoonup \{r_0, r_1, r_2\}$ TMD part
- ▶ $\{N_{u,d}, \beta_{u,d}, \epsilon_{u,d}\}$ valence quarks
- $\qquad \qquad | \{N_{s,sea}, \beta_s = \beta_{sea}\} \text{rest}$

No restrictions for parameters

- ▶ Data driven extraction
- ▶ Positivity (almost satisfied)

Universität Regensburg

14 / 22

Ansatz for Sivers function

$$f_{1T;q\leftarrow h}^{\perp}(x,b) = N_q \frac{(1-x)^{\alpha}\beta^q(1+\epsilon_q x)}{n(\beta_q,\epsilon_q)} \exp\left(-\frac{r_0+xr_1}{\sqrt{1+r_2x^2b^2}}b^2\right)$$

$$u, \ d, \ s, \ sea(=\bar{u},\bar{d},\bar{s})$$

$$vertical fit \ \alpha \in [0,5]$$

$$fix \ \alpha = 1$$

$$Sea \ is \ not \ constrained$$

$$\beta_q = \beta_{sea}, \quad \epsilon_s = \epsilon_{sea} = 0$$

$$No \ resctrictions$$

$$typical fit \ \alpha \in [0,5]$$

$$fix \ \alpha = 1$$

$$Common \ for \ all \ flavors$$

$$Similar \ to \ unpol.$$

12 free parameters

- ▶ $\{r_0, r_1, r_2\}$ TMD part
- ▶ $\{N_{u,d}, \beta_{u,d}, \epsilon_{u,d}\}$ valence quarks
- $\triangleright \{N_{s,sea}, \beta_s = \beta_{sea}\}$ rest

No restrictions for parameters

- ▶ Data driven extraction
- ▶ Positivity (almost satisfied)

Universität Regensburg

14/22

4□ > 4回 > 4 = > 4 = > = 9000

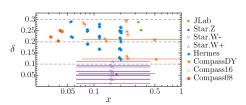
Absence of small-b matching \neq tree order We make extraction using N^3LO evolution!

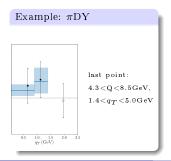


Sivers & QS May 10, 2021 15/22

TMD factorization is valid only at
$$q_T/Q \ll 1$$
 we use $q_T < 0.3Q~(q_T=p_T/z)$ $\langle Q \rangle > 2 {\rm GeV}$

- © Too many data do not fulfill requirement
 - ► COMPASS and JLab "1D" binning (integral over p_T or z)
- © The latest HERMES 3D
- \odot All points from DY (except 1) are valid Only p_T -differential points are taken





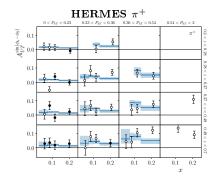
- \triangleright SIDIS = 63 pt.
- \triangleright DY = 13 pt.
- ➤ Total=76 pt.

$$\chi^2/N_{pt} = 0.9$$

No principal problems with SIDIS+DY

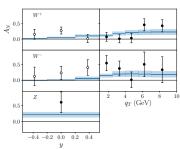
(reminder: large error-bars)

Example of data description



Filled points = in fit,

STAR W^{\pm}/Z

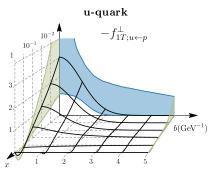


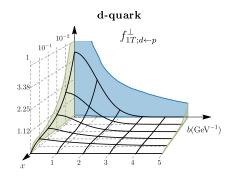
Open point = prediction

Actually, we can explain more data (up to $q_T < 0.4Q$ in SIDIS)

Universität Regensburg

Sivers function





- Notably huge uncertainties
- ▶ Not sign definite
- ▶ Hope for data by JLab12GeV, and EIC

A. Vladimirov Sivers & QS May 10, 2021 18/22

Extracting Qiu-Sterman function

$$f_{1T,q\leftarrow h}^{\perp}(x,b) = -\pi \left\{ T_q(-x,0,x;\mu) + a_s(\mu) \left[-2\mathbf{L}_{\mu} \mathcal{D} \otimes T - C_F \frac{\pi^2}{6} T(-x,0,x;\mu) + \right. \right. \\ \left. \int_{-1}^1 d\xi \int_0^1 dy \delta(x-y\xi) \left(-\frac{\bar{y}}{N_c} T_q(-\xi,0,\xi;\mu) + \frac{3y\bar{y}}{2\xi} G^{(+)}(-\xi,0,\xi;\mu) \right) + \mathcal{O}(a_s^2) \right] + \mathcal{O}(b^2) \right\},$$

- Fix $\mu = c_0/b \; (\mathbf{L}_{\mu} = 0)$
 - ► Only QS-functions! (at this order)
- ► Fix b small (negligible power corections)
- ▶ Invert the formula
 - ▶ Gluon QS is still present...

Pro: Exact relation (no modeling!)

Cons: Fixed value of μ

Universität Regensburg

A.Vladimirov Sivers & QS May 10, 2021 19 / 22

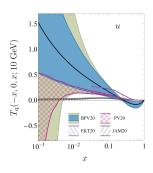
Extracting Qiu-Sterman function

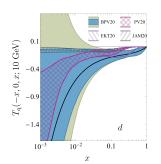
$$b = 0.11/\text{GeV} \Rightarrow \mu = 10\text{GeV}$$

$$T_q(-x, 0, x; \mu_b) = -\frac{1}{\pi} \left(1 + C_F a_s(\mu_b) \frac{\pi^2}{6} \right) f_{1T; q \leftarrow h}^{\perp}(x, b)$$

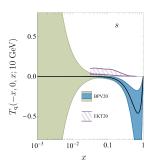
$$-\frac{a_s(\mu_b)}{\pi} \int_x^1 \frac{dy}{y} \left[\frac{\bar{y}}{N_c} f_{1T; q \leftarrow h}^{\perp} \left(\frac{x}{y}, b \right) + \frac{3y^2 \bar{y}}{2x} G^{(+)} \left(-\frac{x}{y}, 0, \frac{x}{y}; \mu_b \right) \right] + \mathcal{O}(a_s^2) + \mathcal{O}(b^2)$$

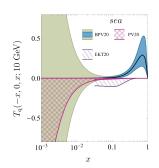
$$G^{(+)} = \pm (|T_d| + |T_u|)$$

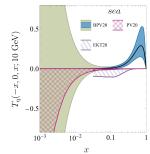


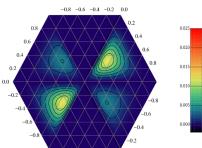


Extracting Qiu-Sterman function









0.6 0.4 0.2 0.0

Large-x for anti-quarks (bug?/feature?)

- ▶ Main source of asymmetry in DY
- ▶ Similar to models
- ▶ Can be made smaller (within $\chi^2/N_{pt} = 1$)
- ► No "common" sense restrictions valence vs. sea (since it is interference term)

Waiting JLab measurements...

A. Vladimirov Sivers & QS May 10, 2021 21/22

Conclusion

Sivers function \rightarrow Qiu-Sterman function

- ightharpoonup The small-b asymptotic for Sivers is well studied
 - ▶ LP at NLO
 - ▶ N^kLP at LO

Sivers function from DY+SIDIS

- ▶ N^3 LO theory (ζ -prescription)
- ▶ Unbiased ansatz for Sivers function
- ► Conservative cut for data
- ▶ Agreement between SIDIS and DY (accounting large error-bands)
- ▶ Many supplementary studies see [2103.03270]

Results available at

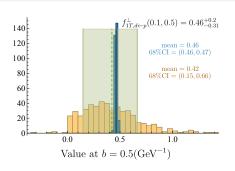
- artemide
- ▶ also with TMDlib2 (set BPV20)

Backup slides

23 / 22

A. Vladimirov Sivers & QS May 10, 2021

Poor data = large uncertainties

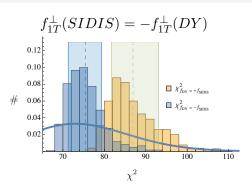


- ► Uncertainties estimated by replica method
 - ▶ Fitting 300 replicas of pseudo data
- ► Large and (often) asymmetric uncertainties
- Uncertainty due to unpol.TMD are non-negligible but much smaller then due to data

◆□ → ◆□ → ◆ □ → ◆ □ →

A.Vladimirov Sivers & QS May 10, 2021 24/22

Check sign-change



$$f_{1T}^\perp(sea) \to -f_{1T}^\perp(sea)$$

Main source for large DY asymmetry are anti-quarks!

Universität Regensburg

A. Vladimirov Sivers & QS May 10, 2021 25/22

Current status of the small-b matching

refs. are defined in [V.Moos, AV, 2008.01744]

		Twist of	Twist-2	Twist-3	Order of	
Name	Function	leading	distributions	distributions	leading power	Ref.
		matching	in matching	in matching	coef.function	
unpolarized	$f_1(x,b)$	tw-2	$f_1(x)$	_	$N^3LO(\alpha_s^3)$	[21, 22]
Sivers	$f_{1T}^{\perp}(x,b)$	tw-3	_	T(-x,0,x)	NLO (α_s^1)	[23]
helicity	$g_{1L}(x,b)$	tw-2	$g_1(x)$	$T_g(x)$	NLO (α_s^1)	[16, 17]
worm-gear T	$g_{1T}(x,b)$	tw-2/3	$g_1(x)$	$T_g(x)$	LO (α_s^0)	[13, 14]
transversity	$h_1(x,b)$	tw-2	$h_1(x)$	$T_h(x)$	NNLO (α_s^2)	[19]
Boer-Mulders	$h_1^{\perp}(x, b)$	tw-3	_	$\delta T_{\epsilon}(-x,0,x)$	LO (α_s^0)	[14]
worm-gear L	$h_{1L}^{\perp}(x,b)$	tw-2/3	$h_1(x)$	$T_h(x)$	LO (α_s^0)	[13, 14]
pretzelosity	h_{1T}^{\perp}	tw-3/4	_	$\mathcal{T}_h(x)$	LO (α_s^0)	eq.(4.8)

- ▶ Twist-2 and twist-3 contributions at all powers of b^2 (tree)
- ▶ Typical expression (here for Sivers function):

$$f_{1T}^{\perp}(x,b) = \pm \pi \left\{ T_q(x) + \sum_{n=1}^{\infty} \left(\frac{x^2 b^2 M^2}{4} \right)^n \int_0^1 du \int dy \frac{\delta(x-uy)}{(n+1)!(n-1)!} \left(\frac{\bar{u}}{u} \right)^n \frac{1 + (n-1)u + u^2}{1-u} T_q(y) \right\}$$

- T(x) = T(-x, 0, x) is Qiu-Sterman function
- ightharpoonup TMDs_{proton} \sim TMDs_{nuclei}
- ▶ Non-trivial matching for pretzelosity
 - ▶ Leading term: $h_{1T}^{\perp}(x,b) = -x^2 \int_x^1 \frac{du}{u} \frac{1-u^2}{u} \mathcal{T}_h\left(\frac{x}{u}\right) + \text{tw-4}$

A. Vladimirov Sivers & QS May 10, 2021 26 / 22