Gluon distribution in the nucleon from Lattice QCD

Raza Sabbir Sufian

(For the HadStruc Collaboration)

x-dependent hadron structure on lattice : Formalisms

- Hadronic tensor (Liu & Dong, PRL 1994)
- Position-space correlators (Braun & Müller, EPJ 2008)
- Quasi-PDFs & LaMET(Ji [PRL 2013, Sci. China Phys 2014])
- "Good" Lattice Cross Sections (Ma & Qiu, 2014, PRL 2018)

Lattice calculation: RSS, Egerer, Karpie, Ma, Qiu, et al (PRD 2019, 2020)

Pseudo-PDFs (Radyushkin, PLB 2017)

Today's talk

Gluon distribution in Pseudo-PDF approach

On the lattice, calculate spatial correlation in coordinate space

$$M_{\mu lpha; \lambda eta}(z,p) \equiv \langle p | G_{\mu lpha}(z) [z,0] G_{\lambda eta}(0) | p
angle$$
 X. Ji [PRL 2013]

- Extra linear UV divergence, $z/a \ (a \rightarrow 0)$ from Wilson line
- Multiplicative renormalizability (coordinate space)

Ishikawa, Ma, Qiu, Yoshida [PRD 2017]

Pseudo-PDF: Based on QCD short-distance factorization

$$\mathcal{P}(x,z^2) = \int_{-\infty}^{\infty} d\nu \, e^{-ix\nu} \mathcal{M}(\nu,z^2) \qquad \text{Radyushkin [PLB 2017]}$$

$$\mathcal{P}(x,z^2) \stackrel{z^2=0}{\to} f(x,\mu^2)$$

lacktriangle Ioffe time, $\,
u=p_zz\,$ (convention from Braun, et al [PRD 1995])

Gluon distribution in Pseudo-PDF approach

To determine unpolarized gluon distribution

$$M_{0i;0i}(\nu,z^2) + M_{ji;ij}(\nu,z^2) = 2p_0^2 M_{pp}(\nu,z^2)$$

Balitsky, Morris, Radyushkin [PLB 2020]

■ Renormalization: UV divergences have no ν -dependence in leading log, and if $\mathcal{M}(\nu,z^2)$ is multiplicatively renormalizable,

$$\mathcal{M}^{\text{unpol}}(\nu, z^2) = \frac{M_{pp}(\nu, z^2)}{M_{pp}(0, z^2)}$$

A. Radyushkin [PLB 2017]

- \blacktriangleright Also eliminates $\,z/a\,\,(a \to 0)\,{\rm UV}$ divergences from Wilson line
- See a recent publication arXiv: 2103.02965 (Huo, Su, Gui, Ji, et. al.)

Gluon distribution in Pseudo-PDF approach

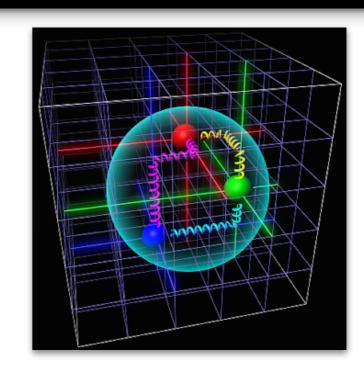
For lattice QCD calculation, define reduced Ioffe time distribution (rITD)

$$\mathcal{M}(\nu, z^2) = \left(\frac{M_{pp}(\nu, z^2)}{M_{pp}(\nu, 0)|_{z=0}}\right) / \left(\frac{M_{pp}(0, z^2)|_{p=0}}{M_{pp}(0, 0)|_{p=0, z=0}}\right)$$

- ► Cancels multiplicative renormalization factors
- ► Cancels overall kinematic factors
- Reduces correlated errors in LQCD matrix elements

Lattice QCD calculation

- 2+1 flavor clover Wilson fermions
- Lattice size, $L \times T = 32^3 \times 64$
- Lattice spacing, $a \approx 0.094$ fm
- lacksquare Pion mass, $m_\pi=358~{
 m MeV}$
- 351 configurations
- z = [0, 0.56] fm
- Hadron boosted along z-direction, $p = \frac{2\pi n}{La} = [0, 2.46] \; \mathrm{GeV}$

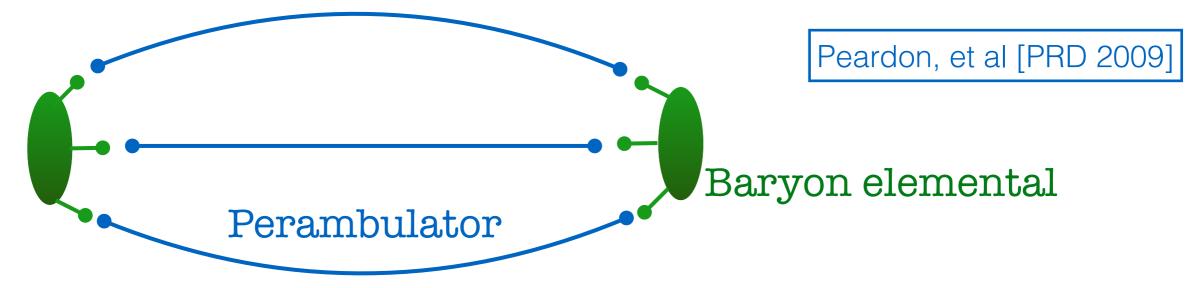


Some features of this calculation

- Gluonic operator using "Wilson flow"
 - ► Flow of gauge field, $B_{\mu}(\tau, x_{\mu})$ so that $B_{\mu}|_{\tau=0} = A_{\mu}$
 - ▶ Diffusion length in x is $\sqrt{8\tau}$ $(\tau \sim a^2)$

M. Luscher, JHEP 2010

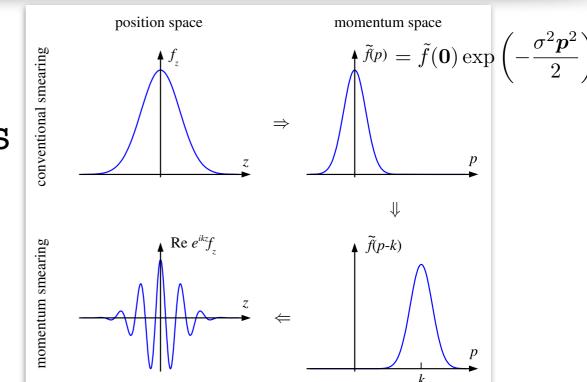
Nucleon correlation function using "Distillation"



- Basis of operators
- ▶ Optimized operators reduce excited-state contaminations
- Perambulators are independent of baryon elementals

Some features of this calculation

Momentum smearing enhances overlap of the nucleon interpolating operators onto the lowest lying states of the boosted hadron



Bali, et al(PRD 2016)

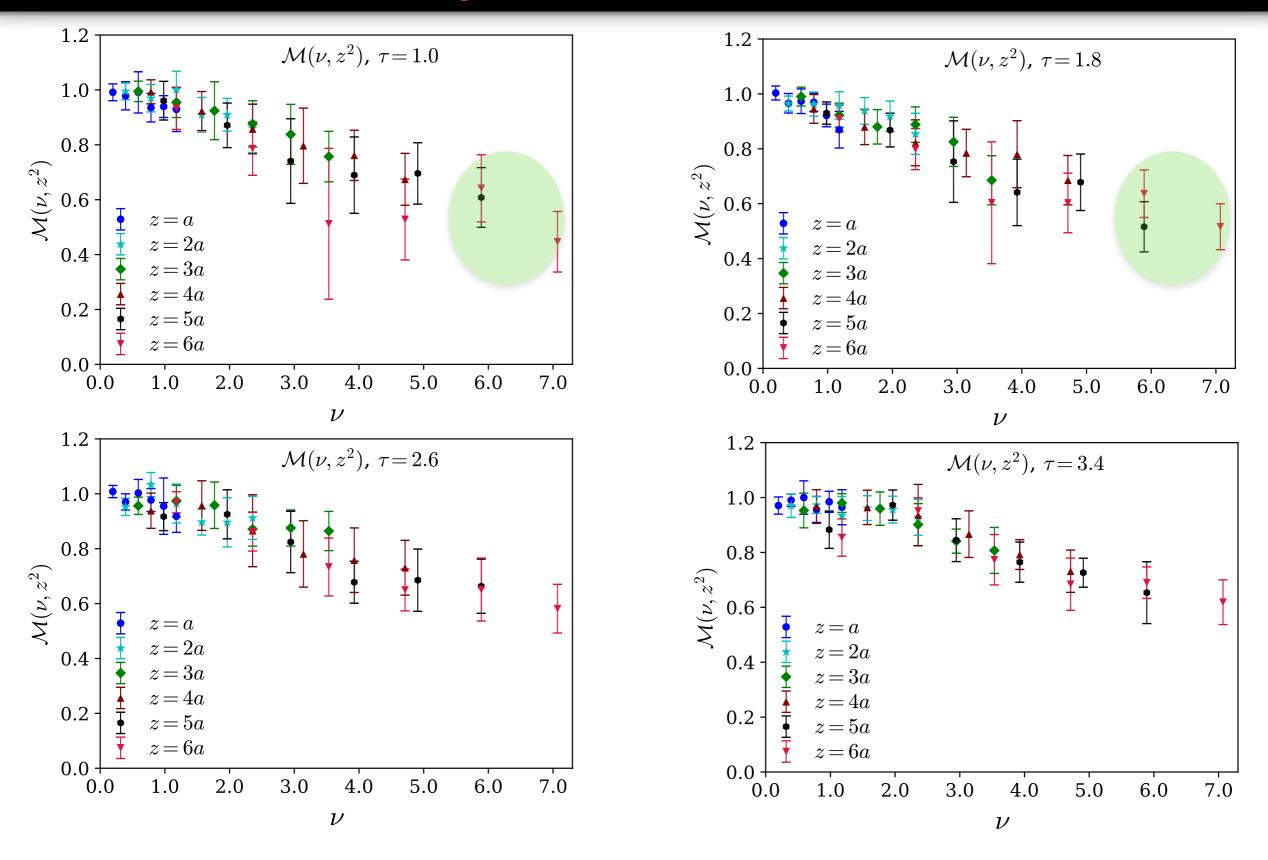
- Correlation matrix analysis using variational technique
 - > System of generalized eigenvalue equations for correlation matrix

$$C(t)v^{n}(t) = \lambda_{n}(t)C(t_{0})v^{n}(t)$$

Orthogonality conditions on the eigenvectors of different states

$$v^{n'\dagger}C(t_0)v^n = \delta_{n,n'}$$

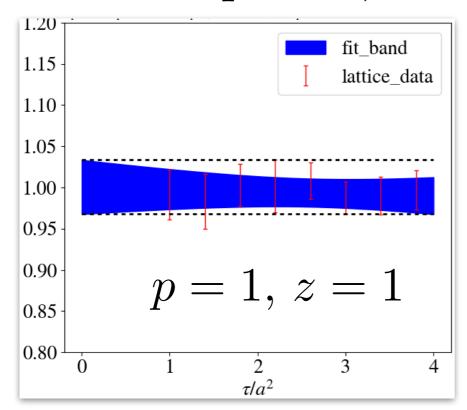
Results: Lattice QCD rITD as a function of flow time

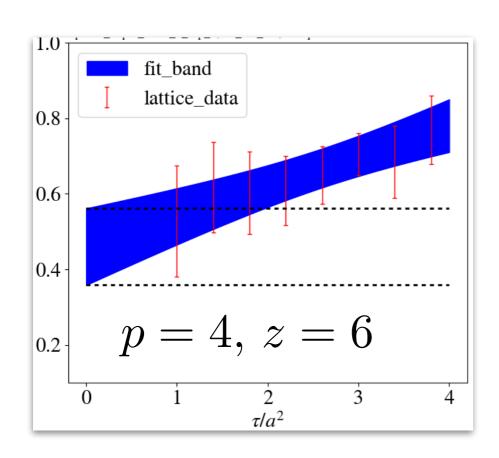


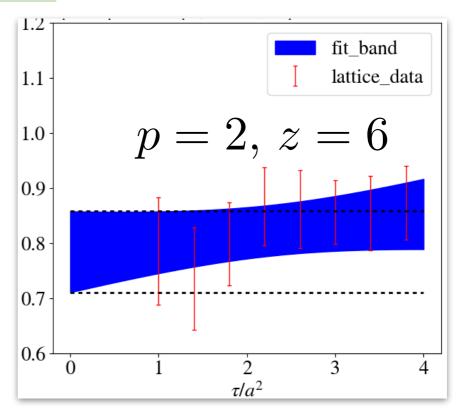
Flow time dependence is minimized in the double ratio

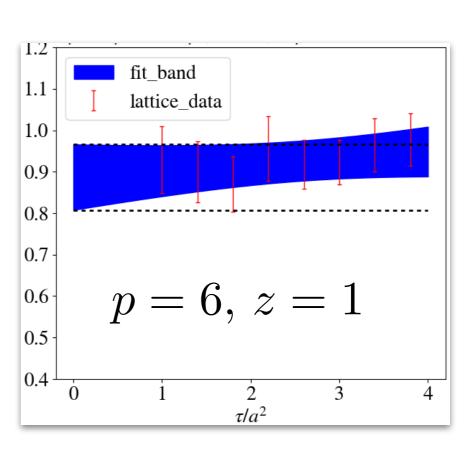
Zero flow time extrapolation of rITD (examples)

For fixed p & z, fit forms: $A + B\tau$, $A + B\tau + C\tau^2$, etc.

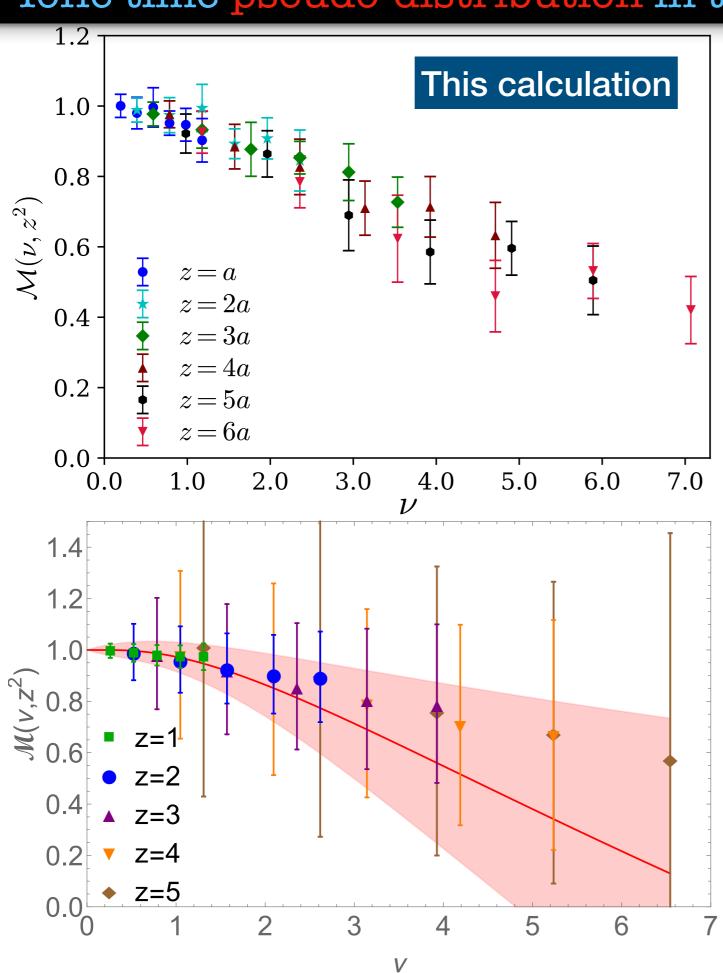








Ioffe time pseudo-distribution in the zero flow time limit



Most precise LQCD determination to date (in preparation)

Fan, Zhang, _in (2007.16113)

$$m_{\pi} = 310 \,\text{MeV}$$
$$a = 0.12 \,\text{fm}$$

From pseudo-distribution to light-cone distribution

One loop matching

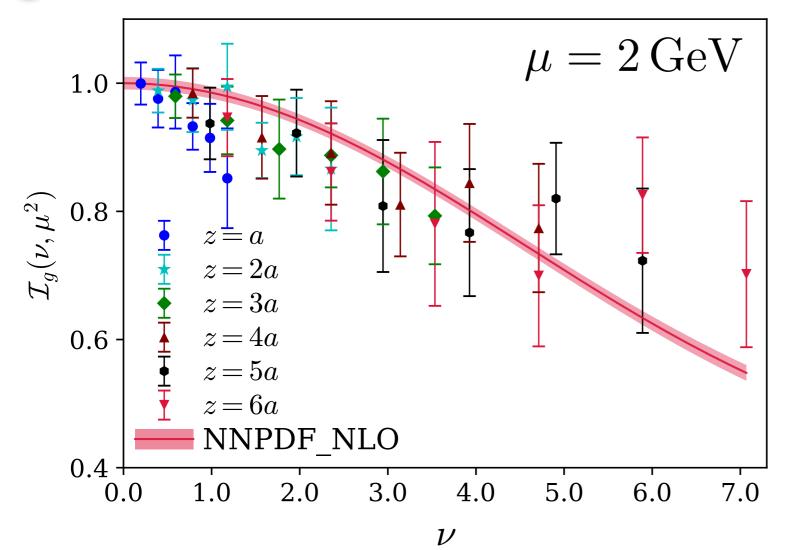
Balitsky, Morris, Radyushkin [PLB 2020]

$$\mathcal{M}(\nu, z_3^2) = \frac{\mathcal{I}_g(\nu, \mu^2)}{\mathcal{I}_g(0, \mu^2)}$$

$$- \frac{\alpha_s N_c}{2\pi} \int_0^1 du \, \frac{\mathcal{I}_g(u\nu, \mu^2)}{\mathcal{I}_g(0, \mu^2)} \left\{ \ln\left(\frac{z_3^2 \mu^2 e^{2\gamma_E}}{4}\right) B_{gg}(u) + 4\left[\frac{u + \ln(\bar{u})}{\bar{u}}\right]_+ + \frac{2}{3} \left[1 + 6u - 6u^2 - u^3\right]_+ \right\}$$

$$- \frac{\alpha_s C_F}{2\pi} \ln\left(\frac{z_3^2 \mu^2 e^{2\gamma_E}}{4}\right) \int_0^1 dw \, \frac{\mathcal{I}_S(w\nu, \mu^2)}{\mathcal{I}_g(0, \mu^2)} \mathfrak{B}_{gq}(w)$$

Quark-gluon mixing not considered in this calculation for now



ITD provides a clear comparison between LQCD data and global fits

Future precise LQCD data can be used as inputs in global fits [Ma & Qiu (2014)]

Determination of unpolarized gluon distribution

• Access to Quasi/Pseudo PDFs matrix elements are limited by available $z \ \& \ p$

$$\mathcal{I}_g(\nu,\mu^2) = \int_0^1 dx \, \cos(x\nu) \, xg(x)$$

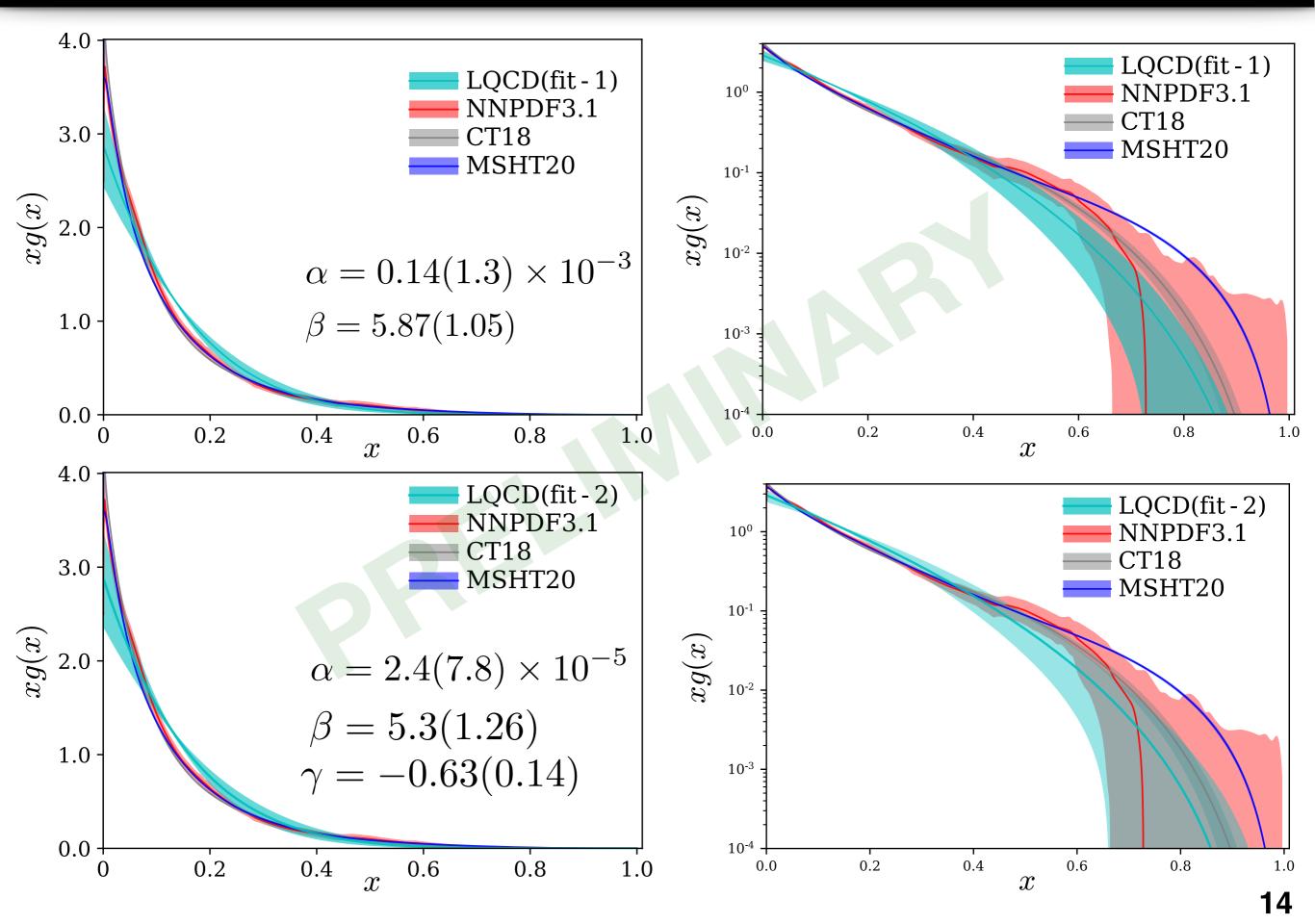
Similar challenge in experiment comes from available kinematics

 $\mathcal{I}_g(\nu) = \int_0^1 dx \cos(\nu x) N_1 x^{\alpha} (1-x)^{\beta}$ Fit-1 $\mathcal{I}_g(\nu) = \int_0^1 dx \cos(\nu x) N_2 x^{\alpha} (1 - x)^{\beta} (1 + \gamma x)$ Fit-2 0.5 This calculation 0.4 8.0 $\mathcal{I}_g(
u,\mu^2)$ 0.3 0.1 $\mathcal{M}(\omega,\mu^2)$ Fit-1 Aymptotic expansion Fit-2 0.0 - 0.00.2 -15 10 20 1.0 2.0 3.0 6.0 7.0 4.0 5.0 0.0

RSS, Liu, Paul (PRD 2021)

13

Determination of unpolarized gluon distribution



Summary & Outlook

- We have presented the most precise LQCD determination of unpolarized gluon Ioffe time distribution
- Near future calculation: A similar LQCD calculation with 2-3 times more statistics
- Near future calculation: Quarks singlet distributions

 Polarized gluon distribution using Lattice Cross Sections and Pseudo-PDFs formalism

The Big Picture

LQCD Community: Contribute to 3D imaging of the nucleon

$$\tilde{q}\left(x,\mu^{2},P_{3}\right) = \int \frac{\mathrm{d}z}{4\pi} e^{-ixzP_{3}} \langle P|\bar{\psi}\left(z\right)\gamma^{3} \exp\left(-ig\int_{0}^{z} \mathrm{d}z'A^{z}\left(z'\right)\right)\psi\left(0\right)|P\rangle$$

$$\mathcal{P}\left(x, z_{3}^{2}\right) = \int_{-\infty}^{\infty} d\nu e^{-ix\nu} \langle p | \phi(z) \phi(0) | p \rangle = \int_{-\infty}^{\infty} d\nu e^{-ix\nu} \mathcal{M}\left(p_{3} z_{3}, z_{3}^{2}\right)$$

$$\mathcal{P}\left(x,0\right) = f\left(x\right)$$

$$\mathfrak{M}\left(\nu, z_3^3\right) = \frac{\mathcal{M}\left(\nu, z_3^2\right)}{\mathcal{M}\left(0, z_3^2\right)}$$

This leads to the evolution equation:

$$\frac{\mathrm{d}}{\mathrm{d}\log z_3^2}\mathfrak{M}\left(\nu, z_3^3\right) = -\frac{\alpha_s}{2\pi}C\int_0^1 \mathrm{d}u \ B\left(u\right)\mathfrak{M}\left(u\nu, z_3^3\right)$$

Gluon distributions and lattice QCD

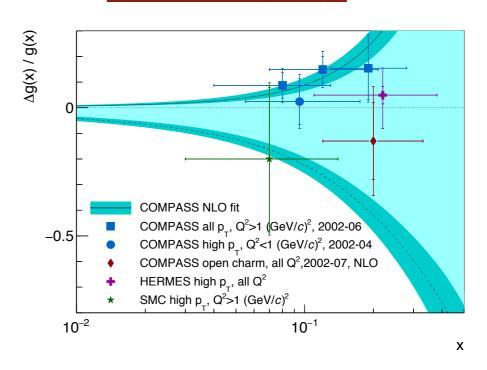
- Uncertainty in gluon distributions at large x is an avenue for LQCD to explore
- Gluon contribution to proton spin unconstrained from experiment
- LQCD determination of gluon spin

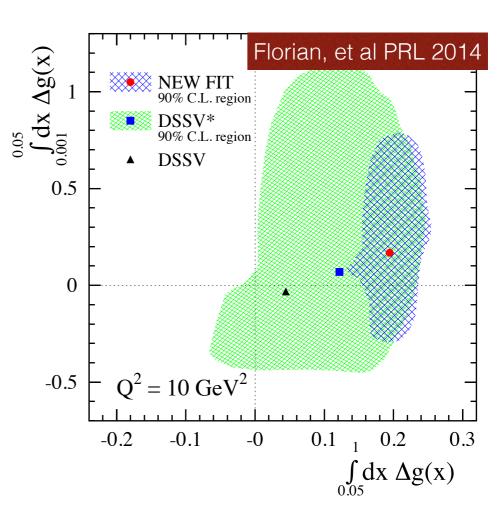
$$\Delta G(\mu^2 = 10 \text{GeV}^2) = 0.251(47)(16)$$

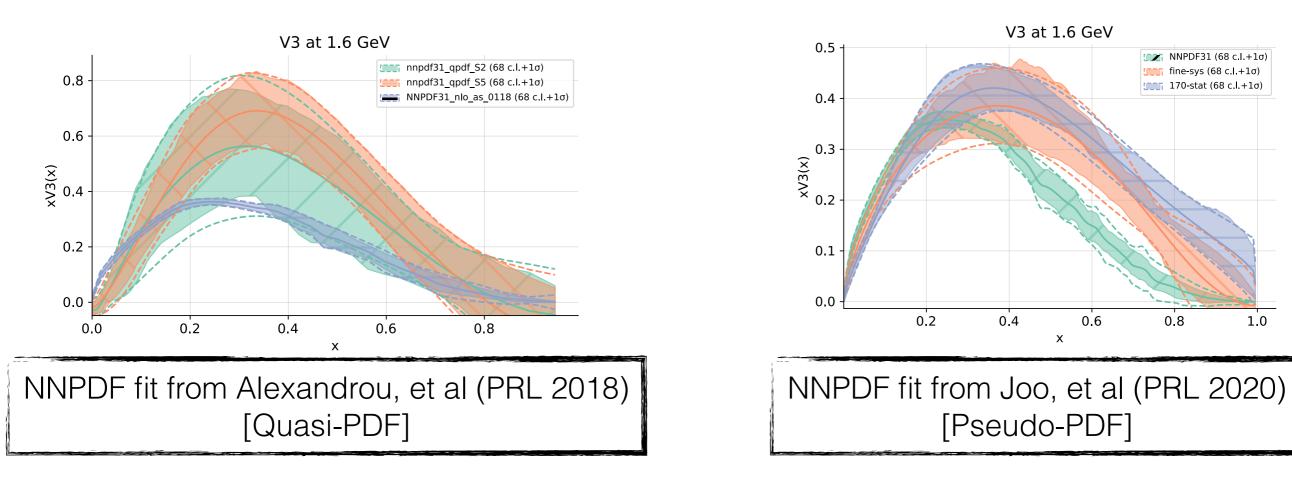
Yang, RSS, et al (PRL 2017)

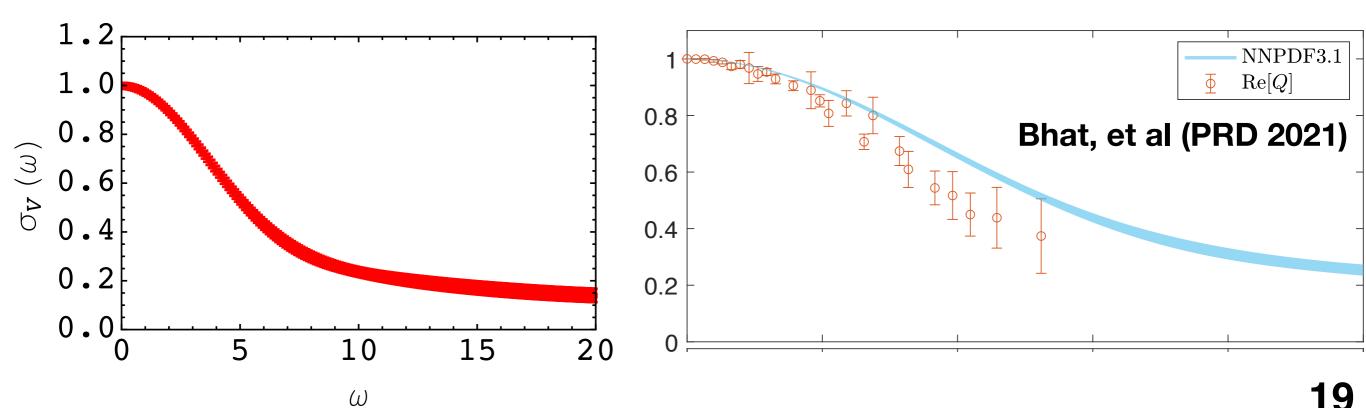
• Small-x gluon distributions from experiment (e.g. EIC) and large-x PDF from LQCD can be complementary

COMPASS (PLB 2016)









NNPDF31 (68 c.l.+1σ)

fine-sys (68 c.l.+1σ)

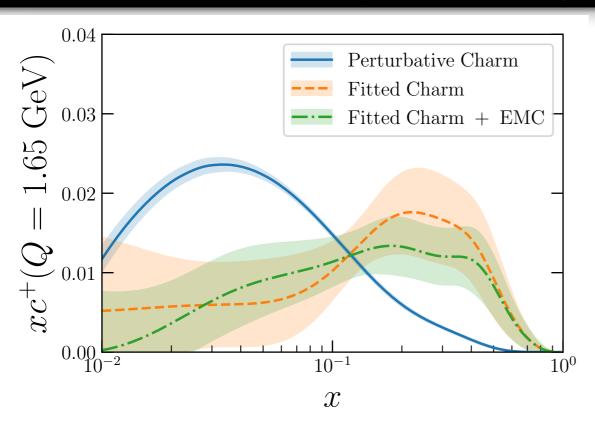
170-stat (68 c.l.+1σ)

0.8

1.0

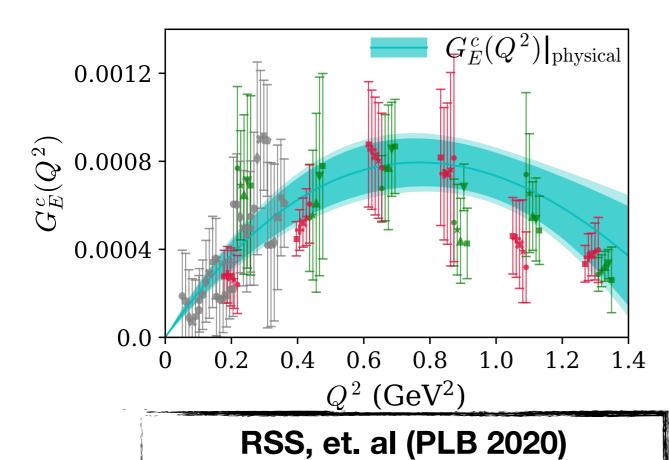
0.6

Lattice QCD input / Some exciting results



Upcoming NNPDF4.0 [arXiv: 2105.00006]

"This comparison highlights how current data favours a valence-like structure for the charm PDF at low-scales, which in turn is consistent with the hypothesis of an intrinsic charm component in the proton wave function."



Physical pion mass, 3 ensembles

