

Evolution with transverse momentum dependent splitting functions

based on ongoing work with

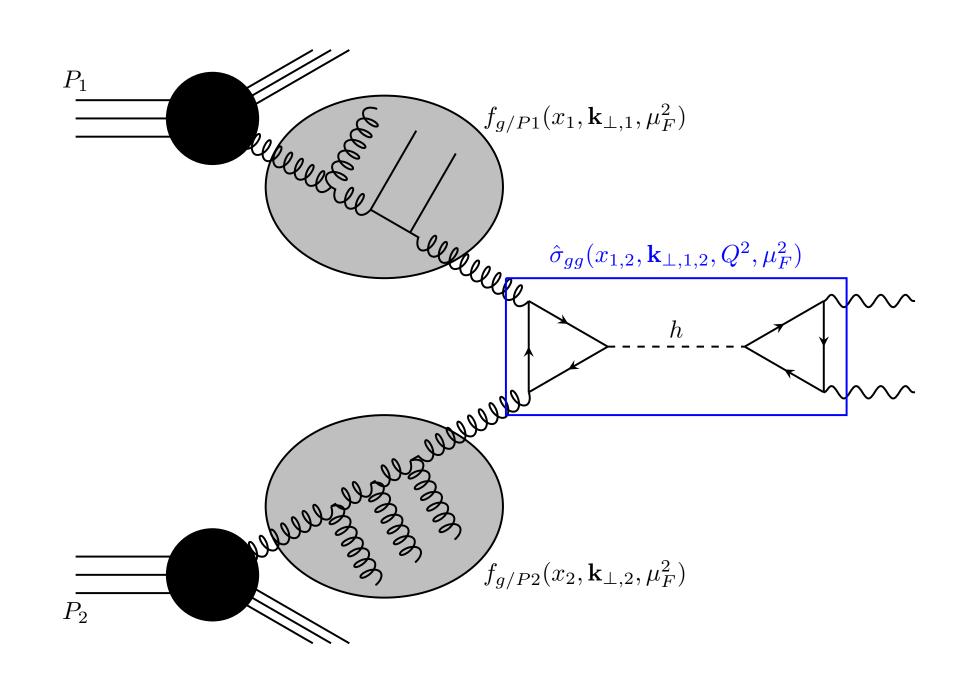
- Francesco Hautmann (Antwerp, Oxford)
- Hannes Jung (Hamburg)
- Lissa Keersmaekers (Antwerp)
- Aleksander Kusina (Cracow)
- Krzysztof Kutak (Cracow)
- Aleksandra Lelek (Antwerp)

Martin Hentschinski

Universidad de las Americas Puebla Ex-Hacienda Santa Catarina Martir S/N San Andrés Cholula 72820 Puebla, Mexico martin.hentschinski@gmail.com

QCD Evolution Workshop 2021, online hosted by the University of California Los Angeles (UCLA), May 10 - 14, 2021.

Transverse Momentum Dependent pdfs at LHC

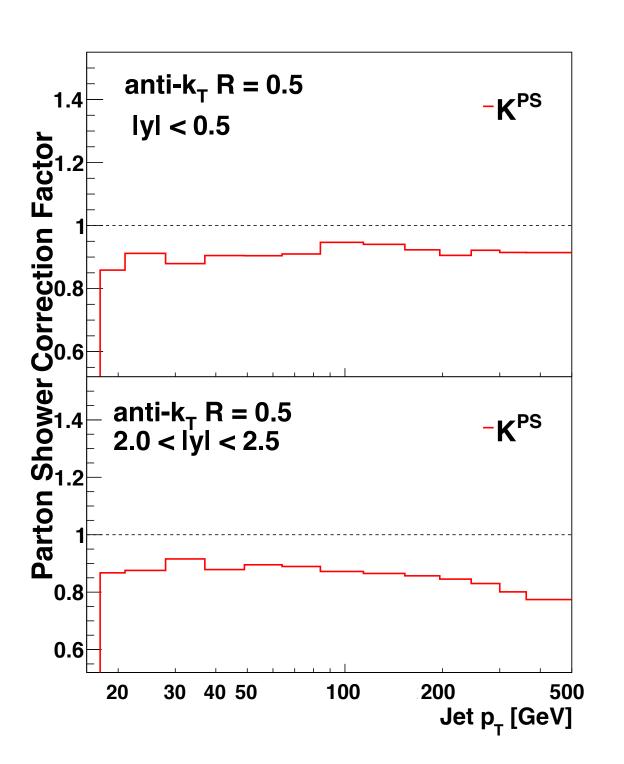


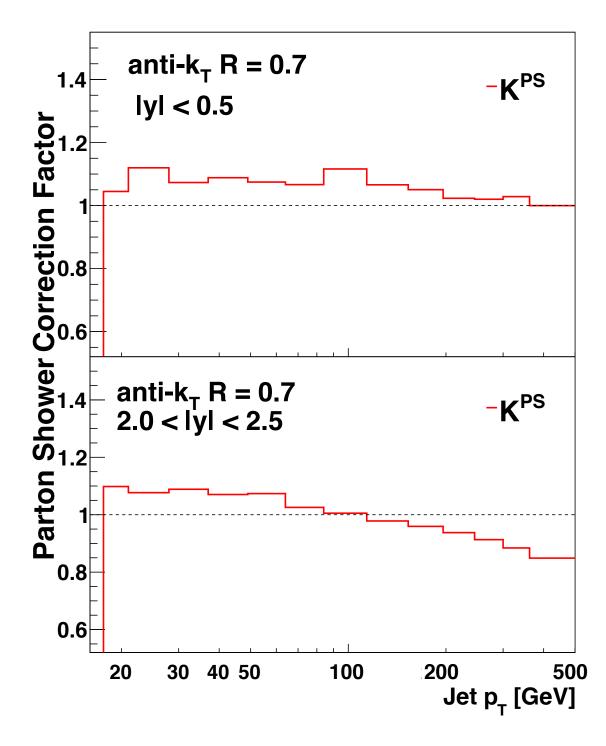
NLO-MC for jet p_T

$$K^{PS} = \frac{N_{NLO-MC}^{(ps)}}{N_{NLO-MC}^{(0)}}$$

conventional collinear factorization: TM in final state from higher order perturbative corrections

→ slows down convergence of perturbative series





Dooling, Gunnellini, Hautmann, Jung; 1304.7180

Parton Branching method

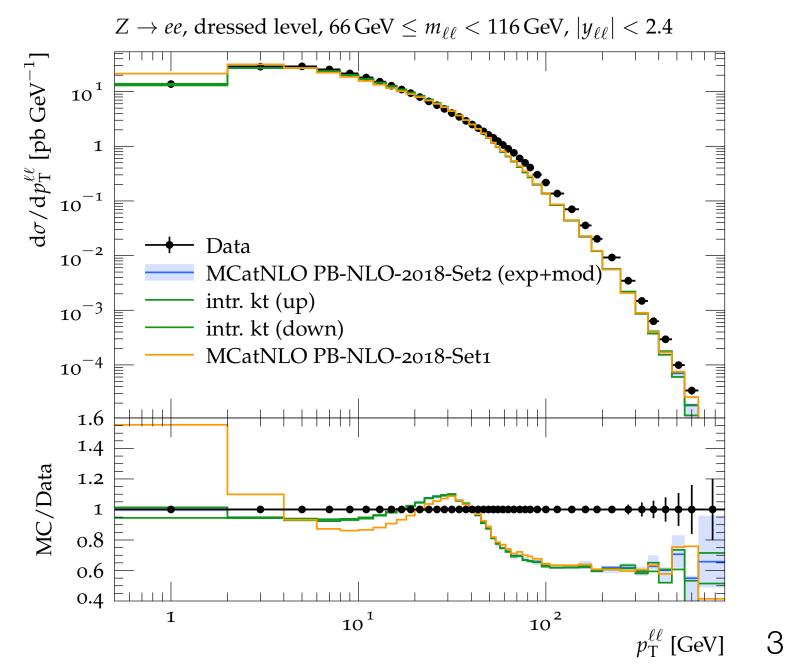
underlying idea:

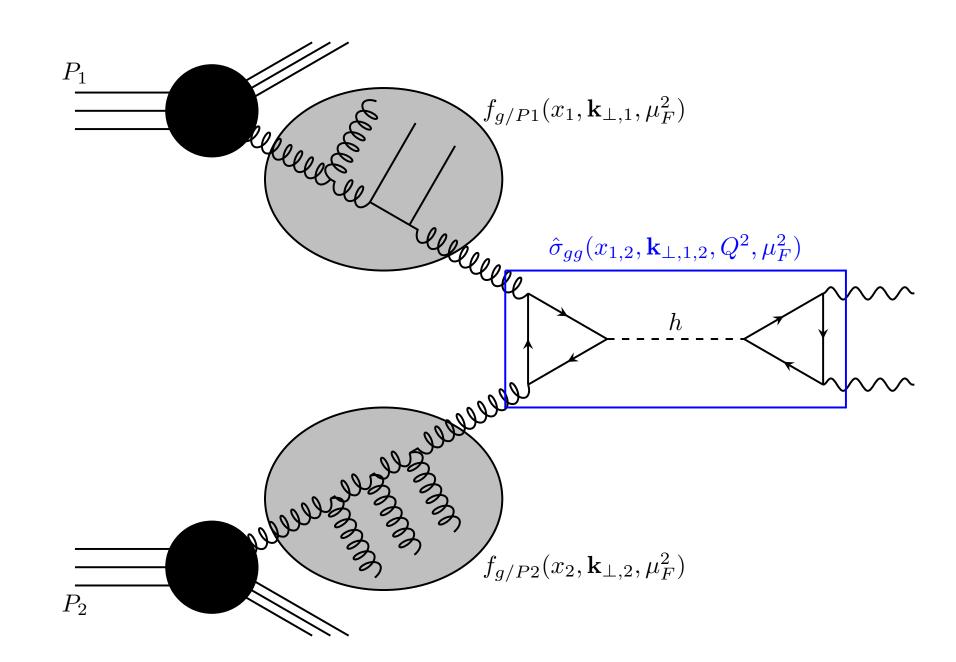
- keep track of transverse momenta along the DGLAP evolution chain → TMD PDF (or unintegrated pdf)
 - → MC formulation of DGLAP evolution
- $P_{ab}^{R}(z)$ real splitting kernels: prob. that parton splits
- Sudakov form factor: prob. that parton does not split
- both closely related through momentum sum rules

phenomenology: Z-boson production

[Rormudoz Martinez et al.]

[Bermudez Martinez et. al. 1906.00919]





- can be formulate at LO, NLO, NNLO
- implemented in Xfitter framework
- particularly useful for MC studies
- available through https://
 tmdlib.hepforge.org/, see also [2103.0974]
- also implemented in Cascade MC
 [Baranov et. al.; 2101.10221]

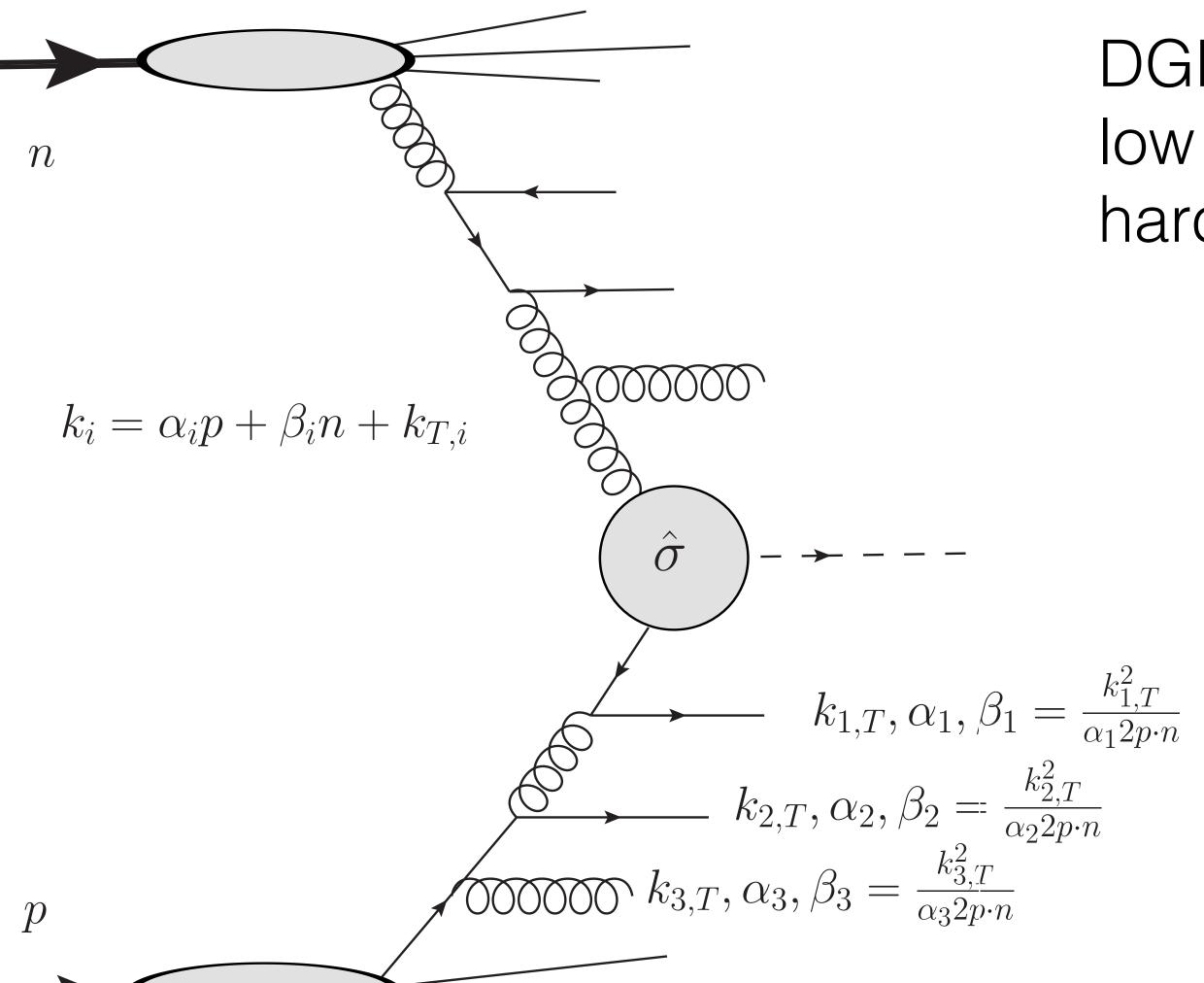
Open questions (personal list)

- precise relation to TMD QCD operator definition (→underway, but not topic of this talk)
- high energy/low x limit: QCD amplitudes are naturally factorized into TMD unintegrated gluon distribution
 - high energy factorization in the dilute limit (no high density effects)
 - BFKL evolution [Kuraev, Lipatov, Fadin; SPJ (1977)], [Balitsky, Lipatov; SJNP (1978)] and unintegrated gluon density
 - k_T -factorization: matching to collinear factorization \rightarrow analytic continuation of partonic cross-section

$$4M^{2}\sigma(x, M^{2}) = \int d^{2}\mathbf{k} \int_{0}^{1} dz_{1} \int_{0}^{1} dz_{2} \hat{\sigma}\left(z_{1}, \frac{\mathbf{k}^{2}}{M^{2}}\right) \mathcal{F}(z_{2}, \mathbf{k}) \delta(z_{1}z_{2} - x)$$

BFKL is an exact QCD result→necessary to re-obtain it within the parton branching method

[Catani, Ciafaloni, Hautmann; NPB366]

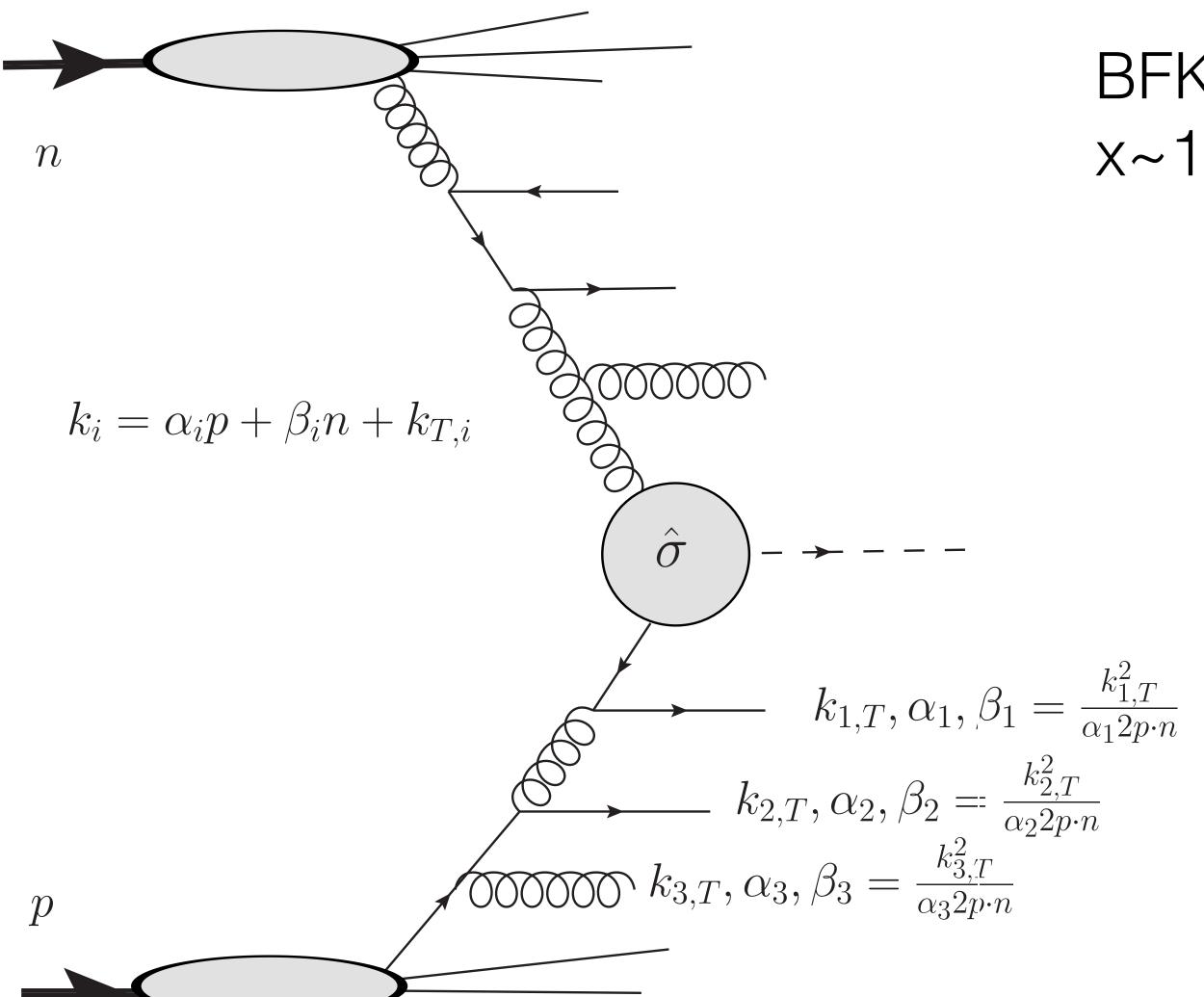


DGLAP= evolution from low scale (hadron) to hard scale (process)

transverse momenta strongly ordered

 $\mathbf{k}_{T,i} \gg \mathbf{k}_{T,i+1}$ (=neglect information on kT \longleftrightarrow isolate logarithmic enhanced term ~ collinear factorization)

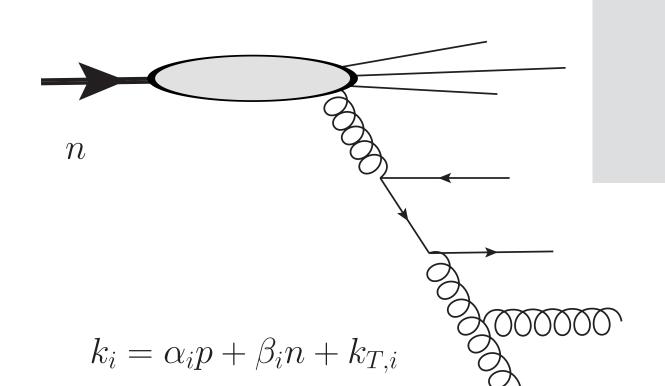
proton momentum fraction lpha treated exactly (no approximation), but implicitly $lpha_i \sim lpha_j$



BFKL= evolution from intermediate $x\sim 10^{-3}$ to low $x\sim 10^{-6}$

proton momentum fraction α strongly ordered $\alpha_i \gg \alpha_j$ (=neglect information on $\alpha \leftrightarrow$ isolate logarithmic enhanced term \sim high energy factorization)

transverse momentum treated exactly (no approximation), but implicitly $\mathbf{k}_{T,i} \sim \mathbf{k}_{T,i+1}$



$\underline{\text{Ordering in }\beta} \text{ (momentum fraction w.r.t. collision partner)}$

$$k = \alpha p + \beta n + k_T$$

$$\hat{\sigma} \longrightarrow ---$$

$$k_{1,T}, \alpha_1, \beta_1 = \frac{k_{1,T}^2}{\alpha_1 2p \cdot n}$$

$$k_{2,T}, \alpha_2, \beta_2 = \frac{k_{2,T}^2}{\alpha_2 2p \cdot n}$$

$$k_{3,T}, \alpha_3, \beta_3 = \frac{k_{3,T}^2}{\alpha_3 2p \cdot n}$$

goal:

- combine DGLAP & BFKL
- extend validity of TMD evolution to the region $x = 10^{-3} - 0.7$

$$\beta_1 \gg \beta_2 \gg \beta_3 \gg \dots$$
 means

$$\frac{k_{T,1}^2}{\alpha_1 2n \cdot p} \gg \frac{k_{T,1}^2}{\alpha_1 2n \cdot p} \gg \frac{k_{T,1}^2}{\alpha_1 2n \cdot p} \gg \dots$$

implies:

$$\alpha_1 \ll \alpha_2 \ll \dots$$

AND

$$\alpha_1 \sim \alpha_2 \sim \dots$$

 $k_{T,1} \sim k_{T,2} \sim \dots$

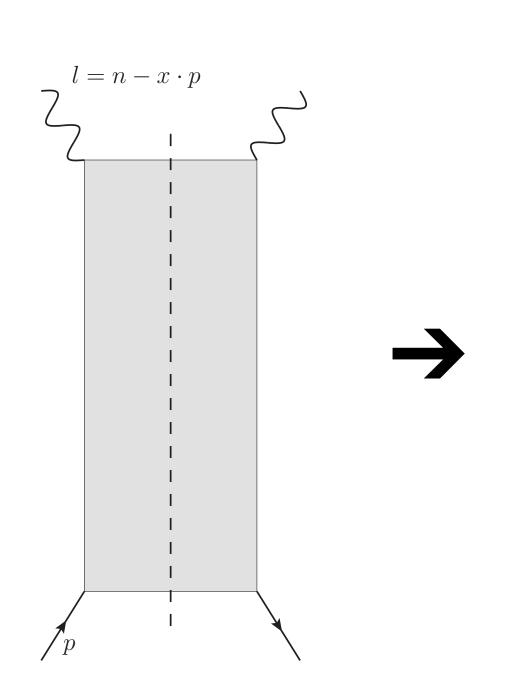
$$k_{T,1} \gg k_{T,2} \gg ...$$

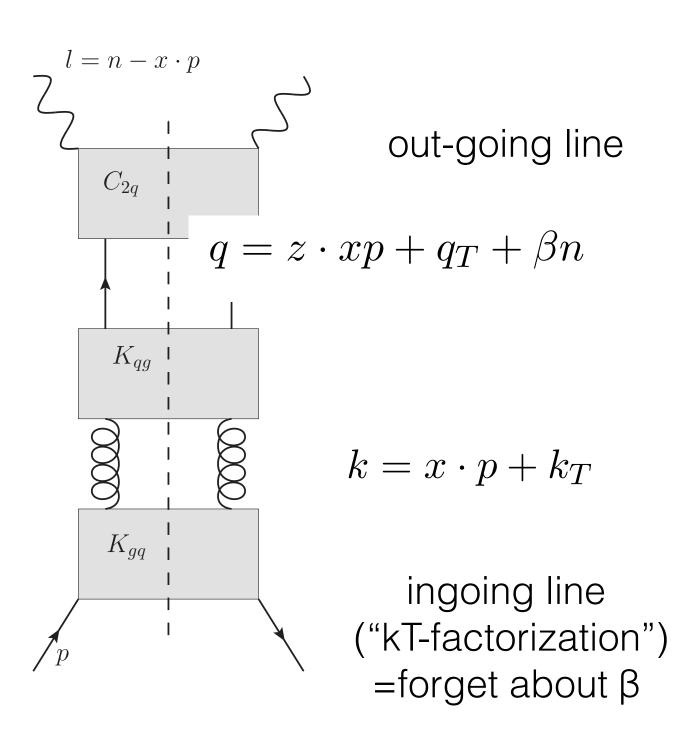
BFKL/Multi-Regge Kinematics

DGLAP/collinear kinematics

Real TMD splitting kernels

task: search for factorization of correlators which is only ordered in β





real part:

- start from diagrammatic definition of collinear factorization in axial gauge [Curci, Furmanski, Petronzio; NPB 1908]
- incoming off-shell legs: high energy factorization as formulated in high energy effective action [Lipatov, hep-ph/9502308]
- gauge invariant kernel + correct high energy & collinear limit
- allows to derive <u>real</u> splitting kernels [Gituliar, MH, Kutak; 1511.08439];
 [MH, Kusina, Kutak, Serino; 1711.04587]
- fails for virtual corrections → TMD distribution in light cone gauge requires transverse gauge link → work in progress

this talk:

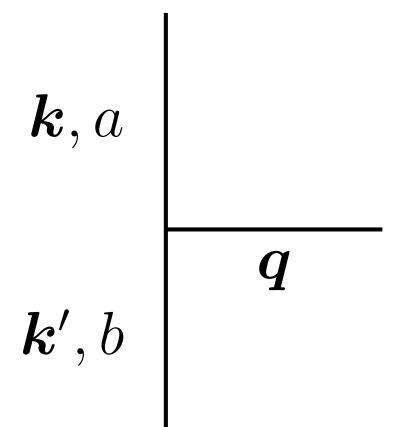
- explore real TMD splitting within parton branching method
- fix missing virtual contributions through probabilistic interpretation

Heuristic generalization of the BFKL equation

$$\mathcal{F}(x, \mathbf{k}^2) = \mathcal{F}^{(0)}(x, \mathbf{k}^2) + \int_x^1 dz \int \frac{d^2 \mathbf{q}}{\pi \mathbf{q}^2} P_{gg}^{TM}(z, \mathbf{q} + \mathbf{k}, \mathbf{q}) \mathcal{F}\left(\frac{x}{z}, (\mathbf{q} + \mathbf{k})^2\right)$$

leading order BFKL:
$$P_{gg}^{TM} o \frac{\alpha_s C_A}{\pi z} \left(\frac{1}{\mathbf{q}^2} + \text{virtual} \right)$$

$$\frac{1}{\boldsymbol{q}^{2}}P_{gg}^{\mathrm{TM},R}(z,\boldsymbol{k}',\boldsymbol{q}) = \frac{\alpha_{s}C_{A}}{2\pi}\frac{e^{-\gamma_{E}\epsilon}}{\mu^{2\epsilon}}\bigg[\frac{2}{z(1-z)\boldsymbol{q}^{2}} + \frac{1}{\boldsymbol{q}^{2}}\frac{\boldsymbol{k}'^{2} - 3\boldsymbol{q}^{2} - \boldsymbol{k}^{2}}{z\boldsymbol{q}^{2} + (1-z)\boldsymbol{k}^{2}} \\ + \frac{(1+\epsilon)z(1-z)}{(z\boldsymbol{q}^{2} + (1-z)\boldsymbol{k}^{2})^{2}}\frac{(2\boldsymbol{k}'\cdot\boldsymbol{q} - \boldsymbol{k}'^{2})^{2}}{\boldsymbol{k}'^{2}}\bigg]$$
 real splitting kernel



Properties:

$$\lim_{\mathbf{k'}^2 \to 0} P_{gg}^{\text{TM},R}(z,\mathbf{k'},\mathbf{q}) = \frac{\alpha_s 2C_A}{2\pi} \frac{e^{-\gamma_E \epsilon}}{\mu^{2\epsilon}} \left[\frac{1}{z(1-z)} - 2 + (1+\epsilon) \frac{(\mathbf{q} \cdot \mathbf{k'})^2}{\mathbf{k'}^2} \right];$$

- DGLAP slitting function in the collinear limit
- real part of BFKL kernel for z o 0

double Mellin space:

$$\hat{P}_{gg}^{R}(\omega, \gamma; \epsilon) = \int_{0}^{1} dz z^{\omega} \int \frac{d^{2+2\epsilon} \mathbf{q}}{\pi} \left(\frac{(\mathbf{k} + \mathbf{q})^{2}}{\mathbf{k}^{2}} \right)^{\gamma-1} \frac{1}{\mathbf{q}^{2}} P_{gg}^{\text{TM}, R}(z, \mathbf{k} + \mathbf{q}, \mathbf{q})$$

$$= \frac{\alpha_{s} C_{A}}{\pi \omega} \left[\frac{1}{\epsilon} + \ln \frac{\mathbf{k}^{2}}{\mu^{2}} + \chi_{0}(\gamma) + \mathcal{O}(\epsilon) \right] + \mathcal{O}(\omega^{0}),$$

anticipating virtual correction (= gluon Regge trajectory)

within high energy effective action: [MH, Sabio Vera; 1110.6741]

BFKL unintegrated gluon density after resumming $(\alpha_s/\omega)^n$ to all orders

$$\mathcal{F}(x, \mathbf{k}^2) = \frac{1}{\mathbf{k}^2} \int \frac{d\omega}{2\pi i} x^{-\omega} \int \frac{d\gamma}{2\pi i} \left(\frac{\mathbf{k}^2}{Q_0^2}\right)^{\gamma} \frac{h^{(0)}(\gamma)}{\omega - \bar{\alpha}_s \chi_0(\gamma)}.$$

collinear limit: BFKL anomalous dimension

$$\gamma^{\text{BFKL}}(\alpha_s, \omega) = \frac{\bar{\alpha_s}}{\omega} + 2\zeta(3) \left(\frac{\bar{\alpha_s}}{\omega}\right)^4 + \dots$$

Quark splittings

$$\frac{1}{\boldsymbol{q}^{2}} P_{gq}^{\text{TM}}(z, \boldsymbol{k}', \boldsymbol{q}) = \frac{\alpha_{s} C_{F}}{2\pi} \frac{e^{-\gamma_{E}\epsilon}}{\mu^{2\epsilon}} \left[\frac{2}{z\boldsymbol{q}^{2}} - \frac{2}{z\boldsymbol{q}^{2} + (1-z)\boldsymbol{k}^{2}} + \frac{(1+\epsilon)z\boldsymbol{q}^{2}}{[z\boldsymbol{q}^{2} + (1-z)\boldsymbol{k}^{2}]^{2}} \right]$$

$$\frac{1}{\boldsymbol{q}^{2}} P_{qg}^{\text{TM},R}(z, \boldsymbol{k}', \boldsymbol{q}) = \frac{\alpha_{s} T_{R}}{2\pi} \frac{e^{-\gamma_{E}\epsilon}}{\mu^{2\epsilon}} \left[\frac{1}{z\boldsymbol{q}^{2} + (1-z)\boldsymbol{k}^{2}} + \frac{z(1-z)\boldsymbol{q}^{2}(2\boldsymbol{q} \cdot \boldsymbol{k}' - \boldsymbol{k}'^{2})^{2}}{\boldsymbol{k}^{2}[z\boldsymbol{q}^{2} + (1-z)\boldsymbol{k}^{2}]^{2}} \right] \qquad \frac{x}{z}, \boldsymbol{k}', b$$

$$\frac{x}{z}$$
, $\mathbf{k'}$, b

$$\frac{x}{z}$$
, \mathbf{k}' , b

$$\frac{1}{\boldsymbol{q}^{2}} P_{qq}^{\text{TM},R}(z, \boldsymbol{k}', \boldsymbol{q}) = \frac{\alpha_{s} C_{F}}{2\pi} \frac{e^{-\gamma_{E}\epsilon}}{\mu^{2\epsilon}} \left[\frac{2}{(1-z)\boldsymbol{q}^{2}} + \frac{\boldsymbol{k}'^{2} - \boldsymbol{k}^{2}}{\boldsymbol{k}^{2}[z\boldsymbol{q}^{2} + (1-z)\boldsymbol{k}^{2}]} - \frac{z\boldsymbol{q}^{2} + \epsilon(1-z)\boldsymbol{k}^{2}}{[z\boldsymbol{q}^{2} + (1-z)\boldsymbol{k}^{2}]^{2}} \right]$$

- correct high energy and collinear limits easily verified
- generalization to arbitrary flavors ...

$$\mathcal{F}_a(x, \boldsymbol{k}^2) = \mathcal{F}_a^{(0)}(x, \boldsymbol{k}^2) + \sum_b \int_x^1 dz \int \frac{d^2 \boldsymbol{q}}{\pi \boldsymbol{q}^2} P_{ab}^{\text{TM}}(z, \boldsymbol{q}, \boldsymbol{q} + \boldsymbol{k}) \mathcal{F}_b\left(\frac{x}{z}, (\boldsymbol{q} + \boldsymbol{k})^2\right)$$

but: still lacks virtual contribution + requires "renormalization"

From 'bare' to 'physical' TMD PDF

$$xG^{(1)}(x,\mathbf{k}) = \int \frac{d\xi^{-}d^{2}\boldsymbol{\xi}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - i\mathbf{k}\cdot\boldsymbol{\xi}} \langle P|F_{a}^{+i}(\xi^{-},\boldsymbol{\xi})\mathcal{L}_{\xi}^{\dagger}\mathcal{L}_{0}F_{a}^{+i}(0)|P\rangle$$

$$\mathcal{L}_{\xi} = \operatorname{P} \exp\{-ig \int_{\xi^{-}}^{\infty} d\zeta^{-} A^{+}(\zeta, \boldsymbol{\xi})\}\$$

these operator definitions require

- soft factor
- UV renormalization
- virtual corrections

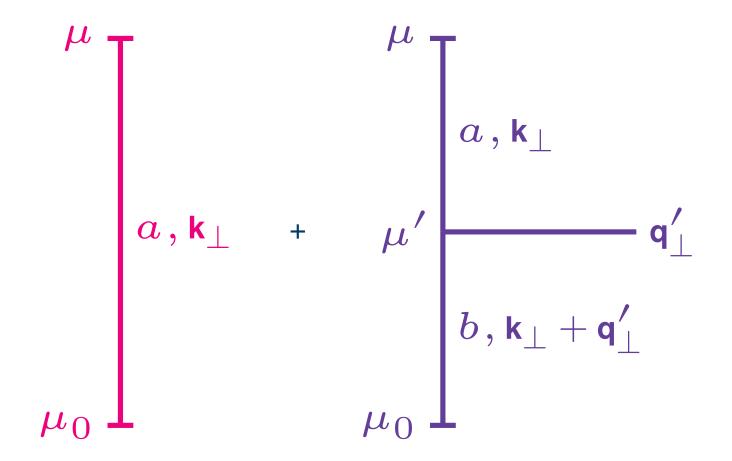
- real splitting kernels can be re-obtained from operator definitions of unpolarized gluon and quark TMD (real 1-loop)
- initial state: reggeized gluon and quark field as defined through high energy effective action

our treatment:

- determine/constraint these conditions through consistency requirement of the parton branching method
- independent formal calculation is under way

Parton branching method: collinear case

prob. for evolution



$$\Delta_a (\mu^2, \mu_0^2) = \exp \left[-\sum_b \int_{\mu_0^2}^{\mu^2} \frac{d\mu'^2}{\mu'^2} \int_0^{z_M(\mu')} dz z P_{ba}^R (z, \alpha_s (b(z)^2 \mu'^2)) \right]$$

with no branchings

with branching

Sudakov form factor

$$\mathbf{q}'_{\perp} = (1 - z')\mu'$$
 collinear angular ordering

$$K_{ab}(z,\mu') = \frac{\Delta_a(\mu^2,\mu_0^2)}{\Delta_a(\mu'^2,\mu_0^2)} P_{ab}^R(z,\alpha_s(b(z)^2\mu'^2))$$

collinear splitting kernel

Naive replacement: $P_{ab}(z) \rightarrow P_{ab}^{TM}(z, \mathbf{k}', \mu')$

- technically possible: since we already integrate over transverse momenta through angular ordering prescription
- Sudakov form factors etc. remain with the collinear prescription

Consequences: rather strong violation of momentum sum rules

$$xf_a(x,\mu) = \int \frac{d^2\mathbf{k}}{\pi} \mathcal{A}(x,\mathbf{k},\mu)$$

relation to conventional integrated pdfs ("DGLAP up to phase space")

$$\int_0^1 dx \sum_a x f_a(x, \mu) = 1$$

need to obey momentum sum rule

$$\int_{0}^{1} dx \sum_{a} x f_{a}(x, \mu) = 1 \text{ for collinear splitting}$$

kernels + collinear Sudakov

$\mu^2 \ [\mathrm{GeV^2}]$	$\alpha_s(\mu^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, dyn. z_M
3	1.000	1.000	1.000
10	0.999	0.999	0.999
10^{2}	0.997	0.997	0.997
10^{3}	0.995	0.993	0.995
10^{4}	0.992	0.989	0.992
10^{5}	0.986	0.981	0.984

 $\int_{0}^{1} dx \sum_{a} x f_{a}(x, \mu) = 1 \text{ for TMD splitting kernels}$

+ collinear Sudakov

$\mu^2 \ [\mathrm{GeV^2}]$	$\alpha_s(\mu^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, dyn. z_M
3	1.029	1.038	1.000
10	1.087	1.139	1.007
10^{2}	1.156	1.304	1.045
10^{3}	1.195	1.413	1.091
10^{4}	1.219	1.478	1.129
10^{5}	1.229	1.507	1.148

From the 'bare' TMD

$$\mathcal{F}_a(x, \boldsymbol{k}^2) = \mathcal{F}_a^{(0)}(x, \boldsymbol{k}^2) + \sum_b \int_x^1 dz \int \frac{d^2 \boldsymbol{q}}{\pi \boldsymbol{q}^2} P_{ab}^{\text{TM}}(z, \boldsymbol{q}, \boldsymbol{q} + \boldsymbol{k}) \mathcal{F}_b \left(\frac{x}{z}, (\boldsymbol{q} + \boldsymbol{k})^2\right)$$

$$\mu' = \frac{\mathbf{q}_T}{1 - z'} \text{ etc}$$

$$\mu'' = \frac{\mathbf{q}_T}{1 - z'} \text{ etc}$$

$$\mathbf{p}'' = \mathbf{q}''_{\perp}$$

$$\mathbf{p}' = \mathbf{q}' = \mathbf{q}' = \mathbf{q}''_{\perp}$$

$$\mathbf{p}' = \mathbf{q}' = \mathbf{q}' = \mathbf{q}' = \mathbf{q}''_{\perp}$$

$$\mathbf{p}' = \mathbf{q}' = \mathbf{q}' = \mathbf{q}' = \mathbf{q}''_{\perp}$$

$$\mathbf{p}' = \mathbf{q}' = \mathbf{q}$$

simplified ordering prescription: $\mu > \mu'' > \mu'$

- misses complete TM range for $z \rightarrow 0$: incomplete BKFL ladder in low x region
- but control well the infra-red region $z \to 1$ focus on these aspects in this work

towards parton branching

Note: this is the region which we need to control to make sense of our 'bare' equation

Define now a TMD PDF which depends on the scale μ

$$\widetilde{A}_{a}(x,k_{\perp},\mu) = \mathcal{F}_{a}^{(0)}(x,\boldsymbol{k}^{2}) + \sum_{b} \int_{x}^{1} dz \int_{0}^{2\pi} \frac{d\phi}{2\pi} \int_{0}^{\mu^{2}} \frac{d\boldsymbol{\mu}'^{2}}{\boldsymbol{\mu}'^{2}} \widetilde{P}_{ab}(z,\boldsymbol{k}',\boldsymbol{q}) \widetilde{A}_{b} \left(\frac{x}{z},|\boldsymbol{k}'|,\mu'\right)$$

- separate off modes with $\mu' > \mu_0$

$$\widetilde{A}_{a}(x, k_{\perp}, \mu_{0}) = \mathcal{F}_{a}^{(0)}(x, \mathbf{k}^{2}) + \sum_{b} \int_{x}^{1} dz \int_{0}^{2\pi} \frac{d\phi}{2\pi} \int_{0}^{\mu_{0}^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \widetilde{P}_{ab}(z, \mathbf{k}', \mathbf{q}) \widetilde{A}_{b} \left(\frac{x}{z}, |\mathbf{k}'|, \mu\right)$$

- separate off modes with $z>z_M,\quad z_M\sim 1-10^{-5}$ defines the "no emission probability" $F_a(\mu^{'2},{\bf k}')$
- contains both (unknown) virtual and unresolved real contributions

note: z_M is a regulator; $z_M = 1 - 10^{-5}$ is the implementation used in the MC solution

intermediate result:

probability of no emission: gathers unresolved real contributions + unknown virtual corrections

$$\tilde{\mathcal{A}}_{a}(x, |\mathbf{k}|, \mu^{2}) = \tilde{\mathcal{A}}_{a}(x, |\mathbf{k}|, \mu_{0}^{2}) - \int_{u_{0}^{2}}^{u^{2}} \frac{d\mu'^{2}}{\mu'^{2}} F_{a}(\mu'^{2}, \mathbf{k}^{2}) \tilde{\mathcal{A}}_{a}(x, |\mathbf{k}|, \mu'^{2}) + \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{0}^{2\pi} \frac{d\phi}{2\pi} \int_{x}^{z_{M}} dz \tilde{P}_{ab}^{R}(z, \mathbf{k}', \boldsymbol{\mu}') \tilde{\mathcal{A}}_{b}\left(\frac{x}{z} ||\mathbf{k}'|, \mu'^{2}\right)$$

real TMD splitting kernels (known): probability of emission

next step: impose momentum sum rule to fix the unknown no emission probability ${\cal F}_a$

$$\sum_{a} \int_{0}^{1} dx \int dk_{\perp}^{2} \tilde{\mathcal{A}}_{a}(x, k_{\perp}, \mu^{2}) = 1.$$

technically: extend usual MC arguments to k_T dependent case, obtain from sum-rule:

$$F_a(\mu'^2, k_\perp) = \sum_b \int_0^{2\pi} \frac{d\phi}{2\pi} \int_0^{z_M} dz \ z \tilde{P}_{ba}^R(z, \boldsymbol{k}, \boldsymbol{\mu}')$$

- sufficient to satisfy the sum-rule
- not necessarily the most general expression

Finally reformulate evolution equation using a TMD Sudakov form factor

$$\Delta_a(\mu^2, k_\perp) = \exp\left(-\sum_b \int_{\mu_0^2}^{\mu^2} \frac{d\mu'^2}{\mu'^2} \int_0^{z_M} dz \ z \bar{P}_{ba}^R(z, k_\perp, \mu')\right).$$

depends now on TM!

eventually obtain the parton branching evolution equation:

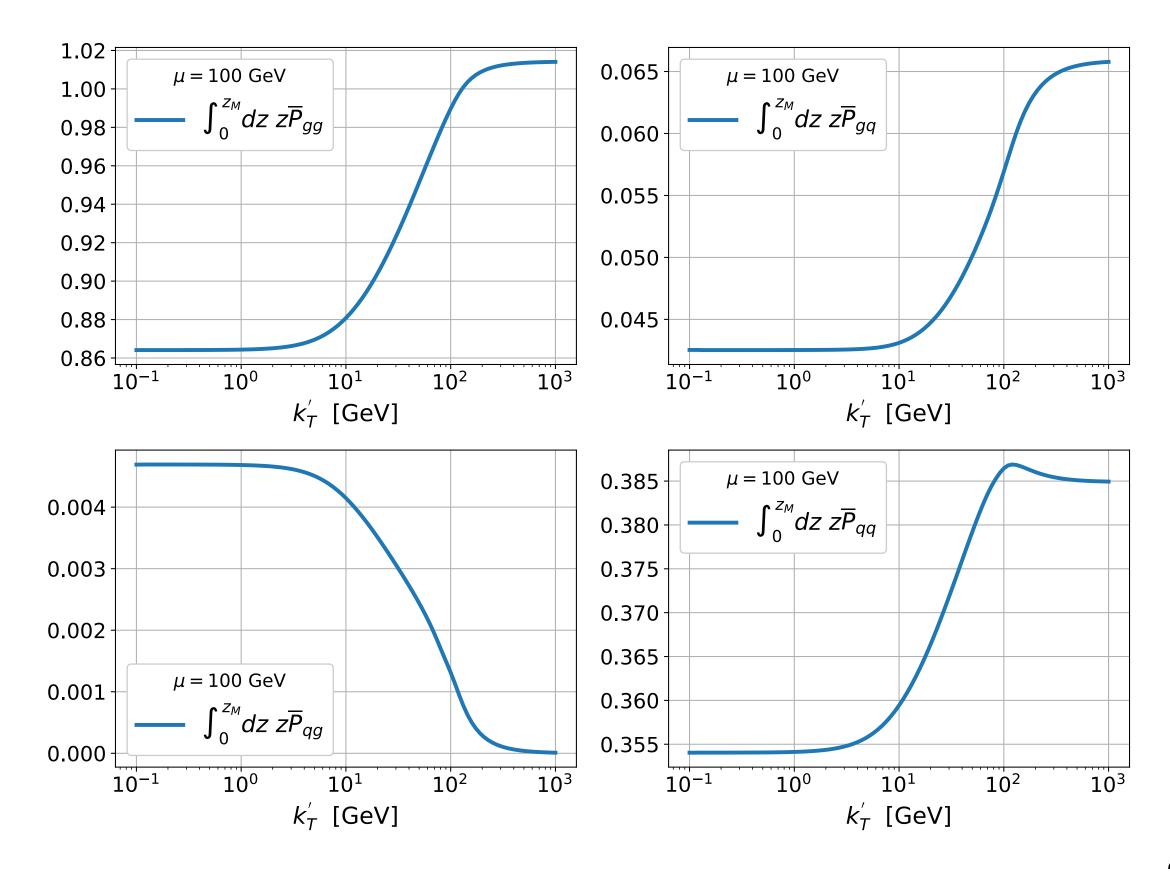
$$\widetilde{A}_{a}\left(x,k_{\perp},\mu^{2}\right) = \Delta_{a}\left(\mu^{2},k_{\perp}\right)\widetilde{A}_{a}\left(x,k_{\perp},\mu_{0}^{2}\right) + K_{ab}(z,\boldsymbol{k}',\boldsymbol{\mu}') = \frac{\Delta_{a}\left(\mu^{2},k_{\perp}\right)}{\Delta_{a}\left(\mu'^{2},k_{\perp}\right)}\widetilde{P}_{ab}^{R}(z,\boldsymbol{k}',\boldsymbol{\mu}',\alpha_{s}) + \sum_{b}\int_{2}^{\mu^{2}}\frac{\mathrm{d}\mu'^{2}}{\mu'^{2}}\int_{0}^{2\pi}\frac{\mathrm{d}\phi}{2\pi}\int_{x}^{z_{M}(\mu')}\mathrm{d}z\,K_{ab}\left(z,\boldsymbol{k}+a(z)\boldsymbol{\mu}',\boldsymbol{\mu}'\right)\widetilde{A}_{b}\left(\frac{x}{z},|\boldsymbol{k}+a(z)\boldsymbol{\mu}'|,\mu'^{2}\right)$$

TMD evolution equation with clear probabilistic interpretation

Properties of splittings & the TMD Sudakov

$$\Delta_a(\mu^2, k_\perp) = \exp\left(-\sum_b \int_{\mu_0^2}^{\mu^2} \frac{d\mu'^2}{\mu'^2} \int_0^{z_M} dz \ z \bar{P}_{ba}^R(z, k_\perp, \mu')\right).$$

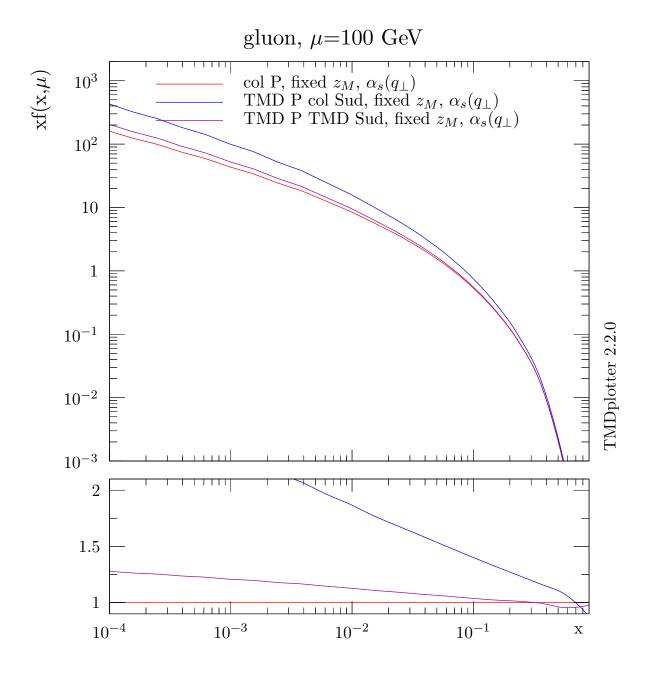
angular average TMD kernels



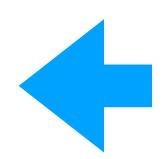
- angular average splitting kernels grow with t-channel transverse momentum
 → increased splitting probabilities
- TMD Sudakov (no splitting probability): drops off for large TM
- collinear limit by construction
- low x resummation only complete for small transverse momenta $k_T \ll \mu$

$$\int_0^1 dx \sum_a x f_a(x, \mu) = 1 \text{ for TMD splitting kernels } + \text{TMD Sudakov}$$

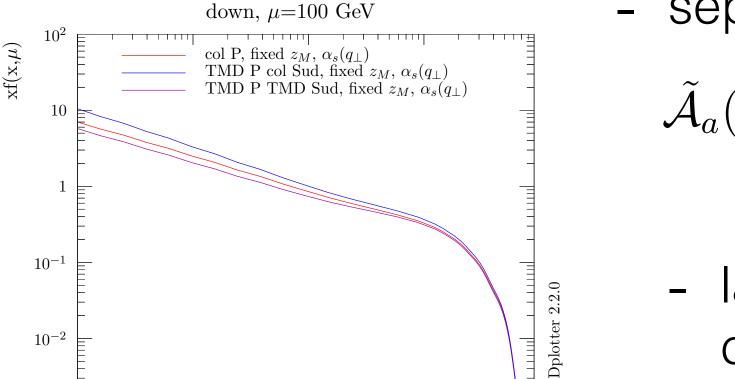
$\mu^2 \; (\mathrm{GeV^2})$	$\alpha_s(\mu^2)$ fix. z_M	$\alpha_s(q_\perp^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, dyn. z_M
3	1.000	1.000	1.000
10	0.999	0.999	0.999
10^{2}	0.997	0.996	0.997
10^{3}	0.994	0.992	0.994
10^{4}	0.991	0.987	0.991
10^{5}	0.984	0.978	0.983



Distributions:



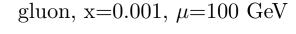
x-dependence

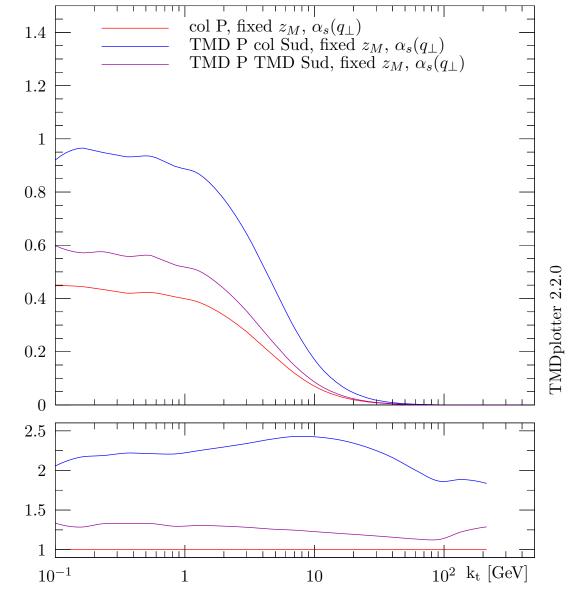


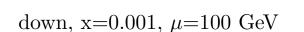
- so far: identical collinear initial condition
- separate fits left as task for the future

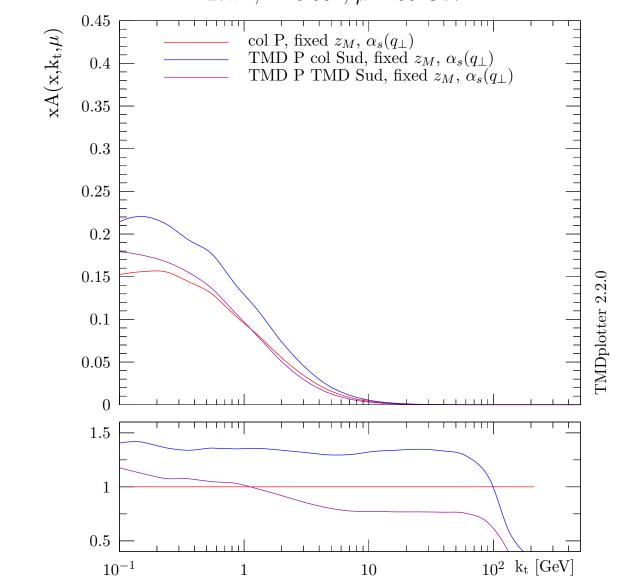
$$\tilde{\mathcal{A}}_a(x, k_{\perp,0}, \mu_0^2) = x f_a(x, \mu_0^2) \cdot \frac{1}{q_s \sqrt{\pi}} \exp\left(-\frac{k_{\perp,0}^2}{q_s^2}\right)$$

- large differences for TMD splitting + collinear Sudakov
- reason: violation of sum rules









Conclusion:

- First implementation of TMD splitting function within the Parton Branching method
- ullet Region which needs to be controlled: soft/infra-red region z o 1
 - implies a rapidity divergence
 - requires 'renormalization'; here achieved through the MC based Parton Branching method (require probabilistic picture)
- In parallel: formal study in progress; seems to lead to similar results
- Future plans:
 - can we include in this way the complete BFKL limit (arbitrary emitted parton q_T at $z \to 1$)?
 - explore relation to MC implementation of CCFM equation (old Cascade [Jung et. al.; 1008.0152]) and NLO BFKL MC (BFKLex [Chachamis, Sabio Vera et.al.; 1606.07349 and others])
 - fits + phenomenology