Two-loop splitting in double parton distributions.

the colour non-singlet case

May 13, 2021

M. Diehl ¹ J. R. Gaunt ² P. Plößl ¹

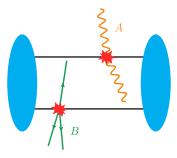
²Department of Physics and Astronomy, University of Manchester

¹Deutsches Elektronen-Synchrotron DESY

Double Parton scattering.

What is double parton scattering?

Double parton scattering (DPS) describes two individual hard interactions in a single hadron-hadron collision:



DPS is naturally associated with the situation where the final state can be separated into two subsets with individual hard scales.

→ DPS gives access to information about hadron structure not accessible in other processes: spatial, spin, and colour correlations between two partons!

Describing DPS.

Factorization for DPS.

Pioneering work already in the 80's:

LO factorisation formula based on a parton model picture [Politzer, 1980; Paver and Treleani, 1982; Mekhfi, 1985]

$$\sigma_{pp\to A,B} = \hat{\sigma}_{ik\to A}(x_1\bar{x}_1s)\,\hat{\sigma}_{jl\to B}(x_2\bar{x}_2s) \times \int d^2y\,F_{ij}(x_1,x_2,y;Q_1^2,Q_2^2)\,F_{kl}(\bar{x}_1,\bar{x}_2,y;Q_1^2,Q_2^2)$$

Increasing interest in DPS in the LHC era:

- ► First experimental data already from previous colliders at CERN and Tevatron, new measurements from LHC with more to come.
- Progress also from theory:
 - ► Systematic QCD description. [Blok et al., 2011; Diehl et al., 2011; Manohar and Waalewijn, 2012; Ryskin and Snigirev, 2012]
 - ► Factorization proof for double DY. [Diehl, Gaunt, PP, Schäfer, 2015; Diehl and Nagar, 2019]
 - ▶ Disentangling SPS and DPS. [Gaunt and Stirling, 2011; Diehl, Gaunt and Schönwald, 2017]

Describing DPS.

Factorization for DPS.

Pioneering work already in the 80's:

LO factorisation formula based on a parton model picture [Politzer, 1980; Paver and Treleani, 1982; Mekhfi, 1985]

$$\sigma_{pp\to A,B} = \hat{\sigma}_{ik\to A}(x_1\bar{x}_1s)\,\hat{\sigma}_{jl\to B}(x_2\bar{x}_2s)$$

$$\times \int d^2y\,F_{ij}(x_1,x_2,y;Q_1^2,Q_2^2)\,F_{kl}(\bar{x}_1,\bar{x}_2,y;Q_1^2,Q_2^2)$$

Increasing interest in DPS in the LHC era:

- First experimental data already from previous colliders at CERN and Tevatron, new measurements from LHC with more to come.
- Progress also from theory:
 - ► Systematic QCD description. [Blok et al., 2011; Diehl et al., 2011; Manohar and Waalewijn, 2012; Ryskin and Snigirev, 2012]
 - ► Factorization proof for double DY. [Diehl, Gaunt, PP, Schäfer, 2015; Diehl and Nagar, 2019]
 - ▶ Disentangling SPS and DPS. [Gaunt and Stirling, 2011; Diehl, Gaunt and Schönwald, 2017]

Describing DPS.

Factorization for DPS.

Pioneering work already in the 80's:

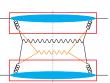
LO factorisation formula based on a parton model picture [Politzer, 1980; Paver and Treleani, 1982; Mekhfi, 1985]

$$\sigma_{pp\to A,B} = \hat{\sigma}_{ik\to A}(x_1\bar{x}_1s)\,\hat{\sigma}_{jl\to B}(x_2\bar{x}_2s)$$

$$\times \int d^2y\,F_{ij}(x_1,x_2,y;Q_1^2,Q_2^2)\,F_{kl}(\bar{x}_1,\bar{x}_2,y;Q_1^2,Q_2^2)$$

Increasing interest in DPS in the LHC era:

- ► First experimental data already from previous colliders at CERN and Tevatron, new measurements from LHC with more to come.
- ▶ Progress also from theory:
 - ► Systematic QCD description.
 - ► Factorization proof for dDY.
 - Disentangling SPS and DPS.



Perturbative splitting in DPS:

- ▶ DPS vs. SPS depends on size of transverse momenta.
- ▶ Subtraction to solve double-counting.

Theory: DPD basics.

Bare position space DPDs:

$$F_{\text{Bus},a_{1}a_{2}}^{r_{1}r_{1}'r_{2}r_{2}'}(x_{1},x_{2},y) = (x_{1}p^{+})^{-n_{1}}(x_{2}p^{+})^{-n_{2}}2p^{+} \int dy^{-} \frac{dz_{1}^{-}}{2\pi} \frac{dz_{2}^{-}}{2\pi} e^{i(x_{1}z_{1}^{-}+x_{2}z_{2}^{-})p^{+}}$$

$$\times \langle p | \mathcal{O}_{a_{1}}^{r_{1}r_{1}'}(y,z_{1}) \mathcal{O}_{a_{2}}^{r_{2}r_{2}'}(0,z_{2}) | p \rangle \big|_{y^{+}=0},$$

$$\begin{split} \mathcal{O}_{q}^{ii'}(y,z) &= \bar{q}_{j'}(\xi_{-}) \left[W^{\dagger}(\xi_{-},v_{L}) \right]_{j'i'} \frac{\gamma^{+}}{2} \left[W(\xi_{+},v_{L}) \right]_{ij} q_{j}(\xi_{+}) \,, \\ \mathcal{O}_{g}^{aa'}(y,z) &= \left[G^{+k}(\xi_{-}) \right]^{b'} \left[W^{\dagger}(\xi_{-},v_{L}) \right]^{b'a'} \left[W(\xi_{+},v_{L}) \right]^{ab} \left[G^{+k}(\xi_{+}) \right]^{b} \,, \\ \text{with } \xi_{\pm} &= y \pm z/2, \, z^{+} = 0, \, z = \mathbf{0}. \end{split}$$

Bare momentum space DPDs:

$$F_{B \text{us},a_1 a_2}^{r_1 r_1' r_2 r_2'}(x_1, x_2, \Delta) = \int d^{2-2\epsilon} y \ e^{iy\Delta} F_{B \text{us},a_1 a_2}^{r_1 r_1' r_2 r_2'}(x_1, x_2, y) \ .$$

Bare position space DPDs:

$$F_{\text{Bus},a_{1}a_{2}}^{r_{1}r_{1}'r_{2}r_{2}'}(x_{1},x_{2},y) = (x_{1}p^{+})^{-n_{1}}(x_{2}p^{+})^{-n_{2}} 2p^{+} \int dy^{-} \frac{dz_{1}^{-}}{2\pi} \frac{dz_{2}^{-}}{2\pi} e^{i(x_{1}z_{1}^{-} + x_{2}z_{2}^{-})p^{+}}$$

$$\times \langle p | \mathcal{O}_{a_{1}}^{r_{1}r_{1}'}(y,z_{1}) \mathcal{O}_{a_{2}}^{r_{2}r_{2}'}(0,z_{2}) | p \rangle \big|_{y^{+}=0},$$

$$\begin{split} \mathcal{O}_{q}^{ii'}(y,z) &= \bar{q}_{j'}(\xi_{-}) \left[W^{\dagger}(\xi_{-},v_{L}) \right]_{j'i'} \frac{\gamma^{+}}{2} \left[W(\xi_{+},v_{L}) \right]_{ij} q_{j}(\xi_{+}) \,, \\ \mathcal{O}_{g}^{aa'}(y,z) &= \left[G^{+k}(\xi_{-}) \right]^{b'} \left[W^{\dagger}(\xi_{-},v_{L}) \right]^{b'a'} \left[W(\xi_{+},v_{L}) \right]^{ab} \left[G^{+k}(\xi_{+}) \right]^{b} \,, \\ \text{with } \xi_{\pm} &= y \pm z/2, \, z^{+} = 0, \, z = \mathbf{0}. \end{split}$$

Bare momentum space DPDs:

$$F_{B \text{us},a_1 a_2}^{r_1 r_1' r_2 r_2'}(x_1, x_2, \Delta) = \int d^{2-2\epsilon} y \ e^{iy\Delta} F_{B \text{us},a_1 a_2}^{r_1 r_1' r_2 r_2'}(x_1, x_2, y) \ .$$

Colour structure of DPDs.

Decomposing the colour structure of DPDs.

The colour indices in the definition of the DPDs can be coupled to an overall colour singlet in a variety of ways. [Mekhfi, 1985] In order to make this more systematic we:

- Couple the fields pairwise $(r_i \text{ and } r_i')$ to irreducible representations R_i of SU(N) such that R_1R_2 is a colour singlet.
- ▶ Decompose the full colour structure in terms of these combinations:

$$F_{\text{Bus},a_1a_2}^{r_1r_1'r_2r_2'}(x_1,x_2,\boldsymbol{y}) \sim \sum_{R_1,R_2} P_{R_1R_2}^{r_1r_1'r_2r_2'} R_1R_2 F_{\text{Bus},a_1a_2}(x_1,x_2,\boldsymbol{y})$$

In addition to $R_1R_2 = 11$ one finds the following colour non-singlet channels:

- $Arr R_1 R_2 = 88$ for $a_1 a_2 = qq'$.
- $Arr R_1 R_2 = 8 A \text{ and } 8 S \text{ for } a_1 a_2 = qg.$
- $Arr R_1 R_2 = A A$, SS, AS, SA, $10\overline{10}$, $\overline{10}$ 10 and 27 27 for $a_1 a_2 = gg$.

Colour structure of DPDs.

Decomposing the colour structure of DPDs.

The colour indices in the definition of the DPDs can be coupled to an overall colour singlet in a variety of ways. [Mekhfi, 1985] In order to make this more systematic we:

- Couple the fields pairwise $(r_i \text{ and } r_i')$ to irreducible representations R_i of SU(N) such that R_1R_2 is a colour singlet.
- ▶ Decompose the full colour structure in terms of these combinations:

$$F_{\text{Bus},a_1a_2}^{r_1r_1'r_2r_2'}(x_1,x_2,\boldsymbol{y}) \sim \sum_{R_1,R_2} P_{R_1R_2}^{r_1r_1'r_2r_2'} R_1R_2 F_{\text{Bus},a_1a_2}(x_1,x_2,\boldsymbol{y})$$

In addition to $R_1R_2 = 11$ one finds the following colour non-singlet channels:

- $R_1R_2 = 88$ for $a_1a_2 = qq'$.
- $Arr R_1 R_2 = 8 A \text{ and } 8 S \text{ for } a_1 a_2 = qg.$
- $Arr R_1 R_2 = A A$, SS, AS, SA, $10\overline{10}$, $\overline{10}$ 10 and 27 27 for $a_1 a_2 = gg$.

Colour structure of DPDs.

Rapidity divergences in colour non-singlet DPDs.

DPDs in colour non-singlet channels exhibit rapidity divergences, which cancel only when combined with the DPS soft factor [Buffing, Diehl and Kasemets, 2017]:

$$R_1R_2F_B(x_1, x_2, y, \zeta_p) = \lim_{\rho \to \infty} \frac{R_1R_2F_{Bus}(x_1, x_2, y, \rho)}{\sqrt{R_1S_B(y, 2\ell_L(\rho, \zeta_p))}},$$

DPS analog for TMD subtraction [Collins, 2011].

where the limit $\rho \to \infty$ corresponds to removing the rapidity regulator.

→ DPDs pick up a rapidity dependence, which is governed by a Collins-Soper type equation:

$$\frac{\partial}{\partial \log \zeta_p} \, \log^{R_1 R_2} F(x_1, x_2, y; \mu, \zeta_p) = {}^{R_1} J(y, \mu) \big/ 2 \,, \qquad \text{with} \quad \frac{\partial}{\partial \log \mu^2} \, {}^R J(y; \mu) = -{}^R \gamma_J(\mu) \,.$$

QCD Evolution 2021 05/13/2021 5/1

Renormalization of DPDs.

Renormalization of UV divergences.

Renormalized position space DPDs:

$${}^{R_1R_2}F(x_1,x_2,y,\mu,\zeta_p) = \sum_{R_1'R_2'} {}^{R_1\overline{R}_1'}Z(\mu,x_1^2\zeta_p) \underset{1}{\otimes} {}^{R_2\overline{R}_2'}Z(\mu,x_2^2\zeta_p) \underset{2}{\otimes} {}^{R_1'R_2'}F_B(y,\mu,\zeta_p).$$

with individual renormalization factors Z for each of the twist-2 operators in the definition of bare DPDs.

Double DGLAP equation for position space DPDs:

$$\begin{split} \frac{\partial}{\partial \log \mu^2} \, ^{R_1 R_2} F_{a_1 a_2}(x_1, x_2, y, \mu, \zeta_p) &= \sum_{b_1, R_1'} \, ^{R_1 \overline{R}_1'} P_{a_1 b_1}(\mu, x_1^2 \zeta_p) \underset{1}{\otimes} \, ^{R_1' R_2} F_{b_1 a_2}(y, \mu, \zeta_p) \\ &+ \sum_{b_2, R_2'} \, ^{R_2 \overline{R}_2'} P_{a_2 b_2}(\mu, x_2^2 \zeta_p) \underset{2}{\otimes} \, ^{R_1 R_2'} F_{a_1 b_2}(y, \mu, \zeta_p) \,, \end{split}$$

QCD Evolution 2021 05/13/2021 6/1

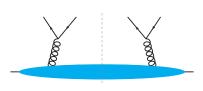
Small distance limit of DPDs.

Perturbative splitting in DPDs.

In the limit of small distance y (and correspondingly large Δ) the leading contribution to a DPD is due to the perturbative splitting of one parton into two:

$${}^{R_1R_2}F(x_1,x_2,\Delta;\mu,\zeta_p) = {}^{R_1R_2}W(\Delta;\mu,x_1x_2\zeta_p) \mathop{\otimes}_{12} f(\mu)$$
,

$${}^{R_1R_2}F(x_1,x_2,y;\mu,\zeta_p) = \frac{\Gamma(1-\epsilon)}{(\pi y^2)^{1-\epsilon}} \, {}^{R_1R_2}V(y;\mu,x_1x_2\zeta_p) \underset{12}{\otimes} f(\mu) \,,$$



where

$$\left[V \underset{12}{\otimes} f\right](x_1, x_2) = \int\limits_{x}^{1} \frac{dz}{z^2} V\left(\frac{x_1}{z}, \frac{x_2}{z}\right) f(z) = \frac{1}{x} \int\limits_{x}^{1} dz V(uz, \bar{u}z) f\left(\frac{x}{z}\right)$$

with

$$x = x_1 + x_2$$
, $u = \frac{x_1}{x_1 + x_2}$, $\bar{u} = 1 - u$.

Small distance limit of DPDs.

Perturbative splitting in DPDs.

In the limit of small distance y (and correspondingly large Δ) the leading contribution to a DPD is due to the perturbative splitting of one parton into two:

$$^{R_1R_2}F(x_1,x_2,\Delta;\mu,\zeta_p) = ^{R_1R_2}W(\Delta;\mu,x_1x_2\zeta_p) \underset{12}{\otimes} f(\mu),$$

formally OPE of $\mathcal{O}(y,z_1)\mathcal{O}(0,z_2)$ for y o 0

$$^{R_1R_2}F(x_1,x_2,y;\mu,\zeta_p) = \frac{\Gamma(1-\epsilon)}{(\pi y^2)^{1-\epsilon}} \, _{R_1R_2}V(y;\mu,x_1x_2\zeta_p) \underset{12}{\otimes} f(\mu) \,,$$

where

$$\left[V \underset{12}{\otimes} f\right](x_1, x_2) = \int\limits_{x}^{1} \frac{dz}{z^2} V\left(\frac{x_1}{z}, \frac{x_2}{z}\right) f(z) = \frac{1}{x} \int\limits_{x}^{1} dz V(uz, \bar{u}z) f\left(\frac{x}{z}\right)$$

with

$$x = x_1 + x_2$$
, $u = \frac{x_1}{x_1 + x_2}$, $\bar{u} = 1 - u$.

QCD Evolution 2021 05/13/2021 7/1

Calculation: Goals.

Goals of our calculation.

What we calculate and how we do this.

The last missing piece for NLO DPS calculations in the framework of [Diehl, Gaunt and Schönwald, 2017] are the NLO coefficients of the V splitting kernels.

- → Already calculated these for the colour singlet case. [Diehl, Gaunt, PP and Schäfer, 2019]
- --> Extend this now to the colour non-singlet sector. This will also allow us to study colour correlations in DPS.

For the actual calculation we first calculate ${}^{R_1R_2}W^{(2)}_{Bus}(\Delta,\rho)$ and then extract the renormalized ${}^{R_1R_2}V^{(2)}$ by performing a RGE analysis.

We perform the calculation for two different rapidity regulators:

- ► Collins regulator using space-like Wilson lines. [Collins, 2011]
- lacktriangledown δ regulator. [Echevarria, Scimemi and Vladimirov, 2016]
- → First application (to our knowledge) of the Collins regulator to a two loop calculation!

Goals of our calculation.

What we calculate and how we do this.

The last missing piece for NLO DPS calculations in the framework of [Diehl, Gaunt and Schönwald, 2017] are the NLO coefficients of the V splitting kernels.

- → Already calculated these for the colour singlet case. [Diehl, Gaunt, PP and Schäfer, 2019]
- --> Extend this now to the colour non-singlet sector. This will also allow us to study colour correlations in DPS.

For the actual calculation we first calculate ${}^{R_1R_2}W^{(2)}_{Bus}(\Delta,\rho)$ and then extract the renormalized ${}^{R_1R_2}V^{(2)}$ by performing a RGE analysis.

We perform the calculation for two different rapidity regulators:

- ► Collins regulator using space-like Wilson lines. [Collins, 2011]
- lacktriangledown δ regulator. [Echevarria, Scimemi and Vladimirov, 2016]
- Obtain identical results in both schemes!

Calculation: $W_{Bus}^{(2)}$.

Calculating $W_{Bus}^{(2)}$.

From Feynman diagrams to $W_{Bus}^{(2)}$.

The NLO $a_0 \to a_1 a_2$ kernel $W^{(2)}_{Bus, a_1 a_2, a_0}$ can be obtained by calculating the DPD for partons a_1, a_2 in parton a_0 :

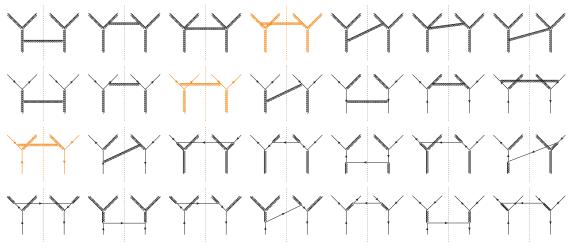
$$F_{\text{Bus},a_1a_2/a_0}^{(2)}(\Delta,\rho) = \sum_b \left[W_{\text{Bus},a_1a_2,b}^{(2)}(\Delta,\rho) \underset{12}{\otimes} f_{B,b/a_0}^{(0)} + W_{\text{Bus},a_1a_2,b}^{(1)}(\Delta,\rho) \underset{12}{\otimes} f_{B,b/a_0}^{(1)} \right] = W_{\text{Bus},a_1a_2,a_0}^{(2)}(\Delta,\rho)$$

At $\mathcal{O}(\alpha_s^2)$ we find the following splitting kernels:

- ► *LO* channels: $g \rightarrow gg$, $g \rightarrow q\bar{q}$, and $q \rightarrow qg$
- ► *NLO* channels: $g \to qg$, $q \to gg$, $q_j \to q_jq_k$, $q_j \to q_j\bar{q}_k$, $q_j \to q_k\bar{q}_k$

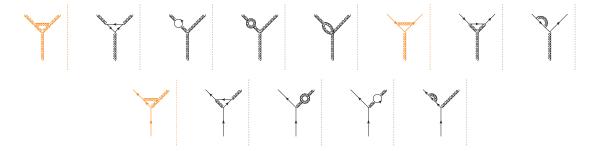
Note: Only LO channels exhibit rapidity divergences.

Calculating $W_{Bus}^{(2)}$.



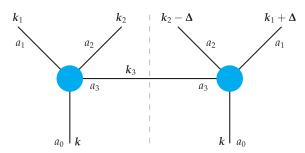
Diagrams in orange give rise to rapidity divergences!

Diagrams in orange give rise to rapidity divergences!



Calculating $W_{Bus}^{(2)}$.

Evaluating real diagrams.



- $k_3 = k k_1 k_2$
- $k_1^+ = z_1 k^+$, $k_2^+ = z_2 k^+$, $\Delta^+ = 0$
- $k_3^+ = z_3 k^+ = (1 z_1 z_2) k^+$
- $F_{Bus}^{(2)}$ and thus $W_{Bus}^{(2)}$ is obtained from these diagrams by integrating over k_1^- , k_2^- , Δ^- , k_1 , and k_2 .
- \longrightarrow The on-shell condition for parton a_3 can be used to perform one of the minus integrations, yielding

$$k_3^- = \frac{k_3^2}{2z_3k^+}$$

→ For the remaining minus integrations we use Cauchy's theorem.

How do we implement the rapidity regulators?

Wilson line propagators in the Collins and δ regulator schemes:

$$\lim_{\varepsilon \to 0} \frac{1}{v_L^- k_3^+ + v_L^+ k_3^- + i\varepsilon} + \text{c.c.} = \frac{2}{v_L^- k^+} \text{ PV} \frac{z_3}{z_3^2 - k_3^2 z_1 z_2 / \rho} \qquad \text{with} \quad \rho = 2k_1^+ k_2^+ v_L^- / |v_L^+| \,,$$

$$\frac{1}{k_3^+ + i\delta^+} + \text{c.c.} = \frac{2}{k^+} \frac{z_3}{z_3^2 + z_1 z_2 / \rho} \qquad \text{with} \quad \rho = k_1^+ k_2^+ / (\delta^+)^2 \,.$$

In order to make the rapidity divergences which arise as z_3^{-1} poles for $\rho \to \infty$ explicit (and well defined) we perform the following distributional expansions:

$$\lim_{\rho \to \infty} \text{PV} \frac{z_3}{z_3^2 - k_3^2 z_1 z_2 / \rho} = \frac{1}{[z_3]_+} + \frac{1}{2} \delta(z_3) \left[\log \frac{\rho}{\Delta^2} - \log(z_1 z_2) - \log \frac{k_3^2}{\Delta^2} \right],$$

$$\lim_{\rho \to \infty} \frac{z_3}{z_3^2 + z_1 z_2 / \rho} = \frac{1}{[z_3]_+} + \frac{1}{2} \delta(z_3) \left[\log \rho - \log(z_1 z_2) \right].$$

QCD Evolution 2021 05/13/2021 13/1

General structure of results.

Colour non-singlet kernels:

$$\begin{split} ^{R_1R_2}V^{(2)}_{a_1a_2,a_0}(z,u,y,\mu,\zeta) &= ^{R_1R_2}V^{[2,0]}_{a_1a_2,a_0}(z,u) + L^{R_1R_2}V^{[2,1]}_{a_1a_2,a_0}(z,u) \\ &+ \left(L\log\frac{\mu^2}{\zeta} - \frac{L^2}{2} + c_{\overline{\mathrm{MS}}}\right)\frac{^{R_1}\gamma^{(0)}_J}{2}\,^{R_1R_2}V^{(1)}_{a_1a_2,a_0}(z,u) \end{split}$$

where $L=\log rac{y^2 \mu^2}{b_0^2}$ and $b_0=2e^{-\gamma}$ and

$$\begin{split} V^{[2,0]}(z,u) &= V_{\rm regular}^{[2,0]}(z,u) + \delta(1-z) \, V_{\delta}^{[2,0]}(u) \, , \\ V^{[2,1]}(z,u) &= V_{\rm regular}^{[2,1]}(z,u) + \frac{1}{[1-z]_+} \, V_+^{[2,1]}(u) + \delta(1-z) \, V_{\delta}^{[2,1]}(u) \end{split}$$

QCD Evolution 2021 05/13/2021 14/1

Results: numerical investigations.

Impact of NLO corrections on small y DPDs.

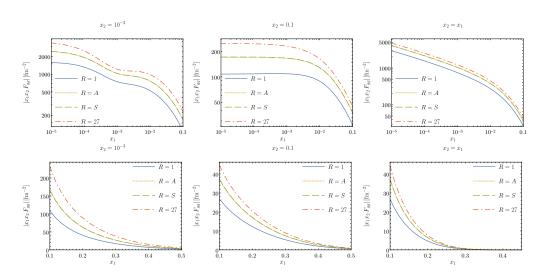
We study how including the NLO corrections effects the small $y\ gg\ \mbox{DPD}$ for the following set of parameters:

- $y = 0.022 \, \text{fm}$
- $\mu = \frac{b_0}{y} = 10 \,\text{GeV}$
- $x_1 x_2 \zeta_p = \mu^2 = 100 \,\text{GeV}^2$

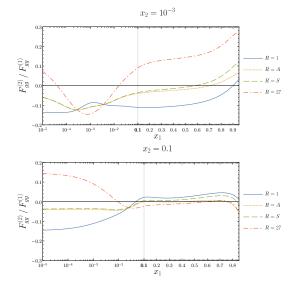
For this choice of parameters only the $V^{[2,0]}$ part of the kernels contributes to the final DPD.

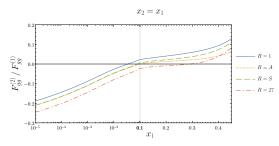
In order to get a feeling for the relative importance of the logarithmic $V^{[2,1]}$ and double logarithmic $V^{(1)}$ parts we vary μ and $\sqrt{x_1x_2\zeta_p}$ by a factor of two around their central values.

 $|x_1x_2|^{RR}F_{gg}|$.



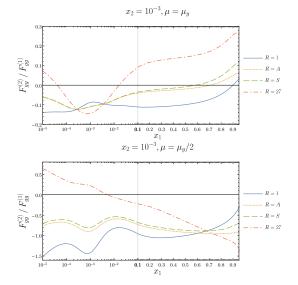
$${}^{RR}F_{gg}^{(2)}/{}^{RR}F_{gg}^{(1)}$$
.

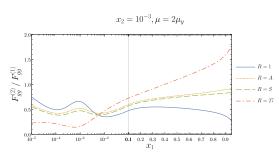




- ▶ moderate ($\mathcal{O}(10\%)$) NLO corrections.
- \triangleright varied structure as a function of x_1 and x_2 .
- results rather independent of PDF sets used.

$${}^{RR}F_{gg}^{(2)}/{}^{RR}F_{gg}^{(1)}$$
.





- ▶ large $(\mathcal{O}(100\%))$ NLO corrections for $\mu \neq \mu_{y}$.
- > splitting form should be evaluated at $\mu \sim \mu_y$ to avoid large higher order corrections.

Backup.

Performing the rapidity subtraction.

A Fourier transform gives the bare unsubtracted NLO position space kernel as:

$$\frac{\Gamma(1-\epsilon)}{(\pi y^2)^{1-\epsilon}} \, {}^{R_1R_2}V_{\text{Bus}}^{(2)}(y,\rho) = \int \frac{d^{2-2\epsilon}\boldsymbol{\Delta}}{(2\pi)^{2-2\epsilon}} \, e^{-i\boldsymbol{\Delta}\boldsymbol{y}} \, {}^{R_1R_2}W_{\text{Bus}}^{(2)}(\boldsymbol{\Delta},\rho) \, .$$

With this and the definition of the rapidity subtracted DPDs one then gets:

$${}^{R_1R_2}V_B^{(2)} = \lim_{\rho \to \infty} \left\{ {}^{R_1R_2}V_{Bus}^{(2)}(\rho) - \frac{1}{2} \, {}^{R_1}S_B^{(1)}(2\ell_L(\rho,\zeta)) \, {}^{R_1R_2}V_B^{(1)} \right\},$$

where the involved quantities on the right-hand side generally differ in the two regulator schemes, while the left-hand side is already independent of this choice!

Performing the UV renormalization.

From the renormalization prescription for the DPDs one easily obtains that the renormalized position space splitting kernel is given by:

$${}^{R_1R_2}V(y,\mu,\zeta) = {}^{R_1\overline{R}_1'}Z(\mu,\zeta) \underset{1}{\otimes} {}^{R_2\overline{R}_2'}Z(\mu,\zeta) \underset{2}{\otimes} {}^{R_1'R_2'}V_B(y,\mu,\zeta) \underset{12}{\otimes} \left({}^{11}Z\right)^{-1}(\mu)$$

The NLO position space splitting kernel $^{R_1R_2}V^{(2)}$ is then obtained by this relation in α_s to $\mathcal{O}(\alpha_s^2)$ as:

$$\begin{split} V^{(2)} &= V_{\mathrm{fin}}^{(2)} - \left(\hat{P}^{(0)} \underset{1}{\otimes} \left[V_{B}^{(1)}\right]_{1} + \hat{P}^{(0)} \underset{2}{\otimes} \left[V_{B}^{(1)}\right]_{1} - \left[V_{B}^{(1)}\right]_{1} \underset{12}{\otimes} P^{(0)} + \frac{\beta_{0}}{2} \left[V_{B}^{(1)}\right]_{1}\right) \\ &+ \left(L \log \frac{\mu^{2}}{\zeta} - \frac{L^{2}}{2} + c_{\overline{\mathrm{MS}}}\right) \frac{\gamma_{J}^{(0)}}{2} V^{(1)} + L \left(\hat{P}^{(0)} \underset{1}{\otimes} V^{(1)} + \hat{P}^{(0)} \underset{2}{\otimes} V^{(1)} - V^{(1)} \underset{12}{\otimes} P^{(0)} + \frac{\beta_{0}}{2} V^{(1)}\right) \end{split}$$

with $L=\log rac{\mu^2 y^2}{b_0^2}$ and $b_0=2e^{-\gamma}$.

More on rapidity.

Rescaling of the rapidity parameter.

The rapidity parameters ζ_p and $\zeta_{\bar{p}}$ in this work are normalised as:

$$\zeta_p \zeta_{\bar{p}} = (2p^+ \bar{p}^-)^2 = s^2$$
,

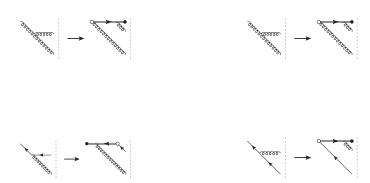
which differs from the convention in the TMD case

$$\zeta \bar{\zeta} = x^2 \bar{x}^2 (2p^+ \bar{p}^-)^2 = Q^4$$
,

where the rapidity parameters are normalized w.r.t. the extracted parton, which would be awkward in the DPD case where parton momenta often appear in convolution integrals.

- \longrightarrow reason: can only depend on the plus-momentum $x_i p^+$ of the parton to which they refer!

From light-cone gauge diagrams to Wilson line diagrams in Feynman gauge.



Kinematic limits.

Kinematic limits of the small y DPDs.

Large $x_1 + x_2$: Plus distributions in the kernels lead to a $\log(1 - x_1 - x_2)$ enhancement in the DPDs.

$$ightharpoonup g
ightarrow gg,\,g
ightarrow qar{q}$$
, and $q
ightarrow qg$

Small $x_1 + x_2$: For sufficiently steep PDFs the convolution integral in the small y DPD is dominated by z^{-2} terms in the kernels (in analogy to z^{-1} terms in DGLAP kernels).

• g o gg, $g o qar{q}$, and q o gg (in almost all colour channels)

Small x_1 or x_2 : Corresponds to the small u and small \bar{u} limit, with leading contributions going as u^{-1} and \bar{u}^{-1} due to slow gluons.

▶
$$g \rightarrow gg$$
, $q \rightarrow gg$, $g \rightarrow qg$ ($u^{-1} \& \bar{u}^{-1}$), $q \rightarrow qg$, and $q \rightarrow qq'$ (\bar{u}^{-1})

Find two sources for this behaviour in small y DPDs:

- ightharpoonup Explicit u^{-1} and \bar{u}^{-1} terms in the kernels.
- $(1-z\bar{u})^{-1} \sim (k^+ k_2^+)^{-1}$, $(1-zu)^{-1} \sim (k^+ k_1^+)^{-1}$ and similar terms.