QCD EVOLUTION 2021

UCLA QCD EVOLUTION WORKSHOP 2021

Saman Bastami

A. V. EfremovP. SchweitzerO. V. TeryaevP. Zavada

Phys. Rev. D 103, 014024 2021

TMDs in the Covariant Parton Model: A Generalized Systematic Approach

- Covariant Parton Model
- The Generalized CPM
- Numerical Results
- Consistency

Basics of the CPM

P. Zavada, Phys. Rev. D 55, 4290

- Partons are free on-shell particles with mass m_q
- Partonic structure of nucleon at rest is spherically symmetric
- No need to work in a specific frame including IMF
- It can be shown that $x = \frac{p^0 + p^1}{M} \approx x_B$ when p_T^2 , $m^2 \ll -q^2$
- Also $m^2/M^2 \le x \le 1$ and $-p_{max} \le p^1 \le p_{max} = \frac{M^2 m^2}{2M}$
- The distributions are related to covariant functions $\mathcal{G}(pP)$ and $\mathcal{H}(pP)$:

$$F(x) = \int \delta\left(\frac{p^0 + p^1}{M} - x\right) \mathcal{G}(p^0) d^3p$$

Original formulation of covariant parton model based on DIS

Parton model assumption : $d\sigma(e^- p) = \int F(\xi) d\sigma(e^- q) d\xi$

$$P_{\alpha}P_{\beta}\frac{F_{2}}{Pq} - g_{\alpha\beta}F_{1} + i\epsilon_{\alpha\beta\mu\nu}q^{\mu} \left[\frac{S^{\nu}}{Pq}g_{1} + \frac{(Pq S^{\nu} - Sq P^{\nu})}{(Pq)^{2}}g_{2}\right]$$

$$+ A(P_{\alpha}q_{\beta} + P_{\beta}q_{\alpha}) + B q_{\alpha}q_{\beta} = \frac{P_{0}}{M}\int \frac{G(p^{0})}{p^{0}} (2p_{\alpha}p_{\beta} - g_{\alpha\beta}pq)\delta((p+q)^{2} - m^{2})d^{3}p$$

$$+ \frac{P_{0}}{M}\int \frac{H(p^{0})}{p^{0}} i\epsilon_{\alpha\beta\mu\nu}q^{\mu}m \overset{\text{(w)}}{\overset{\text{(}}{\overset{\text{(}}} + q)^{2} - m^{2})d^{3}p$$

$$\implies \int f_{1}(x), g_{1}(x), g_{2}(x), \text{ and so}$$

$$\omega^{\mu} = -\frac{p \cdot S}{p \cdot P + mM}P^{\mu} + S^{\mu} - \frac{M}{m}\frac{p \cdot S}{p \cdot P + mM}p^{\mu}$$

 \mathcal{M}

PDFs in the covariant parton model (CPM)

$$f_1(x) = \int \frac{d^3 p}{p_0} \ \mathcal{G}(p_0) \delta\left(x - \frac{p_0 + p_1}{M}\right) (p_0 + p_1)$$

$$g_1(x) = \int \frac{d^3 p}{p_0} \mathcal{H}(p_0) \delta\left(x - \frac{p_0 + p_1}{M}\right) \left(p_0 + p_1 - \frac{p_T^2}{p_0 + m}\right)$$

 $\mathcal{G}(p^0)$ and $\mathcal{H}(p^0)$ can be calculated using f_1 and g_1 extractions

 g_2 and g_T are also obtained... by introducing an auxiliary polarized process

$$h_1(x) = \int \frac{d^3 p}{p_0} \mathcal{H}(p_0) \,\delta\left(x - \frac{p_0 + p_1}{M}\right) \left(p_0 + p_1 - \frac{p_T^2}{2(p_0 + m)}\right)$$

Efremov, Teryaev, and P. Závada Phys. Rev. D **70**, 054018

- The Callan-Gross relation is exact
- > WW-approximation is not an approximation

$$F_2(x) = 2x F_1(x)$$
$$g_T^a(x) = \int_x^1 \frac{dy}{y} g_1^a(y) + \mathcal{O}(m/M)$$

- TMDs in the covariant parton model
- > Considering unintegrated hadronic/quark tensor with $\int d^3p \rightarrow \int dp_1$
- Finding the write projection and decomposition of the quark tensor
- Using the generic decomposition of the quark polarization vector

$$\omega^{\mu} = -\frac{p \cdot S}{p \cdot P + mM} P^{\mu} + S^{\mu} - \frac{M}{m} \frac{p \cdot S}{p \cdot P + mM} p^{\mu}$$

- Comparison to correlator projections on the Dirac structures and find TMDs
- > T-even twist-2 TMDs and $g_T(x, p_T)$ are obtained

Consistent with colinear results?

A consistent and rather systematic approach could be explored

Our new formulation

The quark correlation function is described by

$$\Phi_{ij}^{q}(p,P,S) = 2P_{0} \Theta(p_{0}) \,\delta(p^{2} - m^{2}) \,\overline{u}_{j}(p) \,u_{i}(p) \times \begin{cases} \mathcal{G}^{q}(p \cdot P) & \text{unpolarized case} \\ \mathcal{H}^{q}(p \cdot P) & \text{polarized case} \end{cases}$$

$$\Phi^{q}\left[\Gamma\right] = \frac{1}{2} \operatorname{Tr}\left[\Phi^{q} \Gamma\right] = P_{0} \Theta(p_{0}) \,\delta(p^{2} - m^{2}) \operatorname{Tr}\left[\left(\not p + m\right)\left(\mathcal{G}^{q}(p \cdot P) + \mathcal{H}^{q}(p \cdot P) \,\gamma_{5} \,\phi(p)\right) \Gamma\right]$$

$$\Gamma : 1, \,\gamma^{\mu}, \,\gamma^{\mu}\gamma^{5}, \,\gamma^{5}, \,\sigma^{jk}\gamma^{5}$$

$$\overline{u}(p) \,\Gamma \,u(p) = \operatorname{Tr}\left[\frac{1}{2}(\not p + m)(1 + \gamma_{5} \,\phi(p)) \,\Gamma\right]$$
Quark polarization vector

One can obtain TMDs by comparing the generated terms with the corresponding decompositions of the quark correlator on Dirac structures

The Generalized CPM

From standard QPM

pare with the correlator ction, TMDs now up!

7

uons, no e links and so ccess to T-odd TMDs!

$$\Phi_{ij}(x, p_T, S) = \iint ap \ ap' \ \Phi_{ij}(p, P, S) \ \delta(p' - x P')$$

$$\iint dp^- \, dp^+ \equiv \iint dp_0 \, dp_1$$

TMDs in CPM: A generalized systematic Approch

 $f_{1}^{q} = \int \{dp_{\mathcal{G}}^{1}\} [Mx(p^{0} + m)]$ $g_{1}^{q} = \int \{dp_{\mathcal{H}}^{1}\} [Mx(p^{0} + m) - p_{T}^{2}]$ $g_{1T}^{\perp q} = \int \{dp_{\mathcal{H}}^{1}\} [M(Mx + m)]$ $h_{1}^{q} = \int \{dp_{\mathcal{H}}^{1}\} [m(p^{0} + m) - p_{T}^{2}/2]$ $h_{1L}^{\perp q} = \int \{dp_{\mathcal{H}}^{1}\} [-M(Mx + m)]$ $h_{1T}^{\perp q} = \int \{dp_{\mathcal{H}}^{1}\} [-M^{2}]$

Twist-3 TMDs in CPM

$$f^{\perp q} = \int \{dp_{\mathcal{G}}^{1}\} [M(p^{0} + m)]$$

$$e^{q} = \int \{dp_{\mathcal{G}}^{1}\} [m(p^{0} + m)]$$

$$g_{T}^{q} = \int \{dp_{\mathcal{H}}^{1}\} [m(p^{0} + m) + p_{T}^{2}/2]$$

$$g_{L}^{\perp q} = \int \{dp_{\mathcal{H}}^{1}\} [M(Mx - p^{0})]$$

$$g_{T}^{\perp q} = \int \{dp_{\mathcal{H}}^{1}\} [M^{2}]$$

$$h_{L}^{q} = \int \{dp_{\mathcal{H}}^{1}\} [m(p^{0} + m) + p_{T}^{2}]$$

$$h_{T}^{q} = \int \{dp_{\mathcal{H}}^{1}\} [M(p^{0} - Mx)]$$

$$h_{T}^{\perp q} = \int \{dp_{\mathcal{H}}^{1}\} [M(p^{0} + m)]$$

Numerical Results

Leading twist results

Lefky and Prokudin, PRD 91, 034010 (2015)

Input g_1 which inverts $\mathcal{H}(p_0)$

TMDs in CPM: A generalized systematic Approch

Subleading unpolarized TMDs

$$x f^{\perp q} = f_1$$

Input
$$f_1$$
 which inverts $\mathcal{G}(p_0)$

$$x e^q = \frac{m}{M} f_1$$

We used m = 5 MeV. Becomes important at extremely small x

10

TMDs in CPM: A generalized systematic Approch

Saman <u>Bastami</u>

Subleading polarized TMDs

TMDs in CPM: A generalized systematic Approch

Saman Bastami

Consistency

New perspective: Lorentz Invariant Amplitudes

 B_i amplitudes are absent because Wilson lines in the CPM

 $\Phi^{q\,[\Gamma]} = \frac{1}{2} \operatorname{Tr}[\Phi^{q} \Gamma] = P_{0} \Theta(p_{0}) \,\delta(p^{2} - m^{2}) \operatorname{Tr}\left[(\not p + m)\left(\mathcal{G}^{q}(p \cdot P) + \mathcal{H}^{q}(p \cdot P) \,\gamma_{5} \,\phi(p)\right)\Gamma\right]$

- \circ A_4 , A_5 and A_{12} are zero (naïve T-odd)
- \circ All other A_i amplitudes are obtained

D'Alesio, Leader, and Murgia, Phys. Rev. D 81, 036010 found three independent amplitudes. We are currently investigating how our approach compares to theirs.

 $A_{10} = -P_0 \Theta(p_0) \delta(p^2 - m^2) \mathcal{H}^q(pP)$

• We find only two independent amplitudes (by choice): $A_3 = P_0 \Theta(p_0) \delta(p^2 - m^2) \mathcal{G}^q(pP)$

$$A_1 = \frac{m}{M} A_3$$
 , $A_6 = \frac{m}{M} A_{10}$, $A_7 = \frac{m}{p^0 + m} A_3$, ...

TMDs in CPM: A generalized systematic Approch

Consistency

- ✓ EOM relation are all satisfied
- ✓ Lorentz invariant relations (LIRs) hold true

$$\begin{split} g_T^q(x) &\stackrel{\text{LIR}}{=} g_1^q(x) + \frac{\mathrm{d}}{\mathrm{d}x} g_{1T}^{\perp(1)q}(x) \,, \\ h_L^q(x) &\stackrel{\text{LIR}}{=} h_1^q(x) - \frac{\mathrm{d}}{\mathrm{d}x} h_{1L}^{\perp(1)q}(x) \,, \\ h_T^q(x) &\stackrel{\text{LIR}}{=} - \frac{\mathrm{d}}{\mathrm{d}x} h_{1T}^{\perp(1)q}(x) \,, \\ g_L^{\perp q}(x) + \frac{\mathrm{d}}{\mathrm{d}x} g_T^{\perp(1)q}(x) &\stackrel{\text{LIR}}{=} 0 \,, \\ h_T^q(x, p_T) - h_T^{\perp q}(x, p_T) &\stackrel{\text{LIR}}{=} h_{1L}^{\perp q}(x, p_T) \,, \end{split}$$

✓ WW-type relation are exact

$$g_T^a(x) = \int_x^1 \frac{dy}{y} g_1^a(y) + \tilde{g}'_T^a(x) + \mathcal{O}(m/M)$$
$$h_L^a(x) = 2x \int_x^1 \frac{dy}{y^2} h_1^a(y) + \tilde{h}'_L^a(x) + \mathcal{O}(m/M)$$

$$\begin{aligned} xe &= x\tilde{e} + \frac{m}{M} f_{1}, \\ xf^{\perp} &= x\tilde{f}^{\perp} + f_{1}, \\ xg_{T}' &= x\tilde{g}_{T}' + \frac{m}{M} h_{1T}, \\ xg_{T}^{\perp} &= x\tilde{g}_{T}' + g_{1T} + \frac{m}{M} h_{1T}^{\perp}, \\ xg_{T} &= x\tilde{g}_{T} - \frac{p_{T}^{2}}{2M^{2}} g_{1T} + \frac{m}{M} h_{1}, \\ xg_{L}^{\perp} &= x\tilde{g}_{L}^{\perp} + g_{1L} + \frac{m}{M} h_{1L}^{\perp}, \\ xh_{L} &= x\tilde{h}_{L} + \frac{p_{T}^{2}}{M^{2}} h_{1L}^{\perp} + \frac{m}{M} g_{1L}, \\ xh_{T} &= x\tilde{h}_{T} - h_{1} + \frac{p_{T}^{2}}{2M^{2}} h_{1T}^{\perp} + \frac{m}{M} g_{1T}, \\ xh_{T}^{\perp} &= x\tilde{h}_{T}^{\perp} + h_{1} + \frac{p_{T}^{2}}{2M^{2}} h_{1T}^{\perp}. \end{aligned}$$

- ✓ linear and non-linear model relations, supported in other model studies
- ✓ The positivity constraints were already verified in

Efremov, Teryaev, and P. Závada Phys. Rev. D **70**, 054018

The CPM features in the new formulation

- All polarized and unpolarized T-even TMDs are systematically obtained,
- all can be expressed in terms of $f_1(x, p_T)$ and $g_1(x, p_T)$ which in turn, they are obtained by the collinear PDFs $f_1(x)$ and $g_1(x)$
- T-odd TMDs are absent
- TMD relations expected in QCD or supported by other quark models are satisfied

And possibly:

- Exploring the anti-quark distributions
- Generalization to include off-shell-ness effects
- \circ $\,$ Wish to access T-odd TMDs $\,$

Saman Bastami