
9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 1/31

Summary of Select Activities

Dmitri Smirnov

Updated September 20, 2019

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 2/31

Inroduction
2014: Member of the STAR group

Event reconstruction: Tracking, vertexing, geometry

Software peer reviews, general support

2010: Member of the RHIC Spin group

Online support and operations for RHIC CNI polarimeters

Offline analysis for regular measurements of proton beam polarization

2006: D0 experiment at Fermilab

Tracking detector expert support: Hardware, online controls, offline calibrations

Detector performance monitoring

Integration with event reconstruction software

2005: PhD on top quark properties at Femilab's CDF experiment

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 3/31

Overview of STAR Software
Similar to other big experiments STAR software can be split into two large parts—offline and online

Offline code is responsible for event reconstruction, geometry, simulation, calibration, database,
...

Online code is responsible for reading out detectors, creating raw data DAQ files, detector
monitoring, ...

My focus is on the offline part

STAR code is located in a CVS repository. Total size is 26GB

Includes unpatched MC generators, patched Geant3, paper drafts, and user analysis code with
binary data (23GB ☝)

$echo $CVSROOT
/afs/rhic.bnl.gov/star/packages/repository

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 4/31

Fun Facts and Statistics
Overall 5M lines of code in the most popular languages

About 3.7M lines of code when exclude multiple versions of MC generators and Geant3

Based on Git repo as of August 2019

$tokei --sort=code --type="FORTRAN Legacy,C,C Header,C++,C++ Header,Python,Perl" star-cvs/

 Language Files Lines Code

 FORTRAN Legacy 3673 2400728 1944928
 C Header 3657 2165256 1869860
 C++ 3630 1357126 895478
 C 10405 475461 329001
 Perl 340 120573 81639
 C++ Header 974 76729 40200
 Python 176 38364 29307

 Total 22855 6634237 5190413

$tokei --exclude "StRoot/StarGenerator" --exclude "*geant3*" ...

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 5/31

Legend

commits : Total number of commits
files/c : Files changed per commit
lines++ : Lines added
lines-- : Lines removed
name : NPPS group members

First commit

Author: starlib <> 1993-02-09

44,300 total commits by 250 authors

4.6 commits per day

No activity during 35% of the time

Statistics by

Fun Facts and StatisticsBased on Git repo as of August 2019

 commits files/c lines++ lines--
 fisyak 4844 8.2 5711940 1614370
 didenko 4595 3.1 475511 128456
 perev 3842 3.2 2733529 1433259
 jeromel 3424 2.6 2098468 60738
 fine 2880 2.6 617199 106234
 jwebb 1457 4.2 5481898 41585
 genevb 1210 2.3 283911 37494
 kathy 988 2.3 63332 33938
 ullrich 945 2.9 190422 32948
 smirnovd 812 2.5 42806 26669
 balewski 745 3.4 164257 31887
 tonko 710 2.2 66361 16473
 potekhin 578 6.6 1607303 6615
 jcs 558 1.9 251117 16502
 tai 550 7.0 303363 59626
 caines 512 2.3 72928 18276
 nevski 493 2.3 222354 120066
 lasiuk 488 2.1 65275 18604
 jml 477 3.0 104915 16943
 pibero 472 2.7 52648 37253
 mmiller 459 7.5 341599 36296
 akio 448 4.6 347134 18082
 pruneau 446 4.9 74694 58822
 tull 440 4.9 162712 26052
 calderon 431 3.0 56566 14644
 sakrejda 373 1.6 31555 7118
 suaide 339 3.1 109206 27500
 ward 317 2.4 37787 6898
 rfatemi 299 1.4 477356 6937
 posk 291 3.6 59492 27624
 laue 286 3.6 39720 10031
 kocolosk 270 3.1 149353 20530
 porter 255 8.1 71702 17809
 dmitry 244 1.9 10679 1053
 andrewar 243 1.3 17096 2498
 avossen 230 2.5 43680 5147
 geurts 221 1.8 28456 6281

GitStats

http://gitstats.sourceforge.net/

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 6/31

 oldi 219 2.5 32010 11972
 zhux 218 1.2 7358 1296
 yepes 204 5.1 76010 16497
 prindle 198 6.0 124399 35711
 dongx 180 1.8 25669 4280
 bum 180 3.1 11013 6635
 hack 179 6.3 73366 8660
 wenaus 177 2.5 13133 2404

...
 panitkin 1 2.0 151 0

...

Git Repository

After joining STAR realised that developing with CVS is not very efficient

There are no branches in the STAR CVS-based development workflow. The changes committed
on the MAIN trunk and tested nightly

Without branches hard to test your changes in an isolated environment

Little chance to review or comment on changes. Peer reviews are done only for completely new
code

Decided to convert to a Git repository

Unfortunately, this activity is not widely accepted or supported in STAR

As a result the Git repository is read only and synced with CVS by a cron job a few times a day

github.com/star-bnl/star-cvs

https://plexoos.github.io/pub-docs/npps-intro-activities/github.com/star-bnl/star-cvs

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 7/31

Git Repository
The import script is based on cvs2git converting selected CVS subdirectories to a Git repository

Several CVS subdirectories excluded resulting in the size of selected files of 1.7GB

We run to correct imported history

E.g. CVS history contains a commit of a .git folder 😀 (Must be removed)

Size of bare .git with full history is about 500MB and the full checkout is 900MB

Compare to ROOT repository sizes of 700MB and 1.7GB respectively

The code of external packages (e.g. MC generators) still can be removed from the DVCS making
the STAR software more compact and attractive

github.com/star-bnl/star-cvs

BFG repo cleaner

$git clone ...
$git checkout master
$du --exclude .git -h -d1 star-cvs/ | sort -h
...
878M star-cvs/

https://plexoos.github.io/pub-docs/npps-intro-activities/github.com/star-bnl/star-cvs
https://rtyley.github.io/bfg-repo-cleaner/

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 8/31

Building STAR Libraries
Default STAR toolchain is based on Scientific Linux 7.4 (i.e. Red Hat 7) with upgraded gcc 4.8.5 with
C++11 support

Incomplete list of major external dependencies includes the following

Packages: ROOT v5.34/30 (libraries, rootcint), MC generators, Geant3

Libraries: CERNLIB, xml2, log4cxx, mysql

Tools: python2, perl, bison/yacc, flex

cons is used to build the STAR libraries

Often claimed advantage of cons and CVS is the ability to checkout and compile individual
files/subdirectories

In my opinion, this breaks the isolation of your local builds as you don't have control over the
remote one

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 9/31

Motivation for CMake
cons is the default build system for STAR

Implemented in Perl. cons last updated in 2001
"cons has been decommissioned [...] scons has effectively replaced it"

Building with cons does not easily support installation of STAR libraries and auxiliary files into
multiple directories from same source

E.g. this is useful for comparison of different compiler options

No explicit "installation" step, libraries installed in checked out source directory 😒

CMake has extensive online documentation, regular releases, reasonable defaults

Easy switch between different compilers, their versions, or generators
(e.g. make vs ninja)

Generation of dependency trees which can be examined or used in an IDE

Close to becoming a "standard" for C++ projects

home page

https://www.gnu.org/software/cons/

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 10/31

Building STAR Libraries with CMake
Implementation of CMake builds is quite mature and close to a first public release

Minimum required version is 3.6

Development takes place at

There are known differences in the final libraries produced with cons and CMake but most test jobs
can run without a problem

CMake installs all components in an isolated location (below example is for 32-bit build)

https://github.com/star-bnl/star-sw

19M star-install/.sl74_gcc485/bin
152M star-install/.sl74_gcc485/lib
70M star-install/.sl74_gcc485/include
86M star-install/StarDb
6.6M star-install/StRoot
361M star-install/

https://github.com/star-bnl/star-sw

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 11/31

Building STAR Libraries with CMake
STAR libraries can be built from source in about 20 minutes on a four-core Intel Xeon E5 @ 3.00GHz
with magnetic hard drive

For example, timing for 64-bit builds with
CMAKE_BUILD_TYPE=RelWithDebInfo

CMAKE_BUILD_TYPE=MinSizeRel

32-bit builds are slightly slower (~5–10%)

Static library builds are slightly faster (~15%)

$time make -j4
real 20m17.685s

$time make -j4
real 16m44.444s

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 12/31

Building in a Docker Container

Building STAR software inside a docker container can be used for quick test builds followed by test jobs. A
possible general scenario:

1. A docker image is created with all STAR software dependencies, i.e. ROOT, CERNLIB, and other libraries.
Based on Ubuntu 16 the image size is 2GB

2. A container with STAR code is built on top of that image and tests are executed.
Image size increases to 2.3GB

3. On success the newly created image with STAR libraries is tagged "latest" in the docker repository

4. Subsequent builds can use the "latest" image as cache resulting in faster incremental build

For example, see

Dockerfiles are available in

A couple measurements with incremental builds:

When touch all files in StRoot/StEvent incremental build takes ~6m

When touch all files in StRoot/Sti* incremental build takes ~1m 30s

Best practices for building docker images with GitLab CI

https://github.com/star-bnl/star-sw/docker

https://blog.callr.tech/building-docker-images-with-gitlab-ci-best-practices/
https://github.com/star-bnl/star-sw/docker

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 13/31

Additional Thoughts
CMake can significantly reduce build times of STAR code base by utilizing multi-threading in make

Most of STAR software can be built from source in about 20 minutes

Comparable nightly builds with single-threaded cons take about 2 hours to build

Slow nightly builds may not be the main problem of STAR software approaching its EOL

A practical use of multi-threaded builds may be applied to fast (incremental) builds to allow for a
quick feedback (under 5 minutes) from automatically triggered CI tests

Such workflow would assume extensive use of branches which is not clear (to me) if can/should
be implemented with CVS

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 14/31

Reconstruction Code Optimization
Using callgrind identified a couple of routines where tracking spends a significant fraction of time

Not surprisingly the functions deal with matrix calculations. E.g.

Error propagation. A matrix product where and are matrices, is a
symmetric covariance matrix

Weighted average and its covariance matrix of two multi-dimensional vectors

Benchmarked various implementations including vectorized Eigen, ROOT::Math::SMatrix,
TCL::trasat

Tested different precisions and packing of input values, compiler flags -O2, -O3, -m32, -m64, sse,
avx, auto vectorization

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 15/31

Alternative Implementations:

orig orig_no_branch trasat smatrix eigen
0

100

200

300

400

500

600

700

800

900

build_-march_native_-O2_-m32_-fno-tree-vectorize_-D_EIGEN_DONT_VECTORIZE
build_-march_native_-O2_-m32_-mavx
build_-march_native_-O2_-m32_-mno-avx
build_-march_native_-O3_-m32_-mno-avx
build_-march_native_-O2_-m64_-fno-tree-vectorize_-D_EIGEN_DONT_VECTORIZE
build_-march_native_-O2_-m64_-mavx
build_-march_native_-O2_-m64_-mno-avx
build_-march_native_-O3_-m64_-mno-avx

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 16/31

Alternative Implementations: Weighted Average

orig eigen eigen_packed eigen_packed_float
0

100

200

300

400

500

600

700

800

900

build_-march_native_-O2_-m32_-fno-tree-vectorize_-D_EIGEN_DONT_VECTORIZE
build_-march_native_-O2_-m32_-mavx
build_-march_native_-O2_-m32_-mno-avx
build_-march_native_-O3_-m32_-mno-avx
build_-march_native_-O2_-m64_-fno-tree-vectorize_-D_EIGEN_DONT_VECTORIZE
build_-march_native_-O2_-m64_-mavx
build_-march_native_-O2_-m64_-mno-avx
build_-march_native_-O3_-m64_-mno-avx

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 17/31

Comparison of Options: Weighted Average

orig eigen_NxN
0

100

200

300

400

500

600

set 1
set 2
set 3
set 4
set 5
set 6
set 7
set 8
set 9
set 10
set 11
set 12
set 13
set 14
set 15
set 16

set1 = "-O2 -m32 -msse -mno-avx -ftree-vectorize"
set2 = "-O2 -m32 -msse -mno-avx -fno-tree-vectorize"
set3 = "-O2 -m32 -msse -mno-avx -ftree-vectorize -D EIGEN_DONT_VECTORIZE"
set4 = "-O2 -m32 -msse -mno-avx -fno-tree-vectorize -D EIGEN_DONT_VECTORIZE"
set5 = "-O3 -m32 -msse -mno-avx -ftree-vectorize"
set6 = "-O3 -m32 -msse -mno-avx -fno-tree-vectorize"
set7 = "-O3 -m32 -msse -mno-avx -ftree-vectorize -D EIGEN_DONT_VECTORIZE"
set8 = "-O3 -m32 -msse -mno-avx -fno-tree-vectorize -D EIGEN_DONT_VECTORIZE"
set9 = "-O2 -m64 -msse -mno-avx -ftree-vectorize"
set10 = "-O2 -m64 -msse -mno-avx -fno-tree-vectorize"
set11 = "-O2 -m64 -msse -mno-avx -ftree-vectorize -D EIGEN_DONT_VECTORIZE"
set12 = "-O2 -m64 -msse -mno-avx -fno-tree-vectorize -D EIGEN_DONT_VECTORIZE"
set13 = "-O3 -m64 -msse -mno-avx -ftree-vectorize"
set14 = "-O3 -m64 -msse -mno-avx -fno-tree-vectorize"

t15 " O3 64 ft t i D EIGEN DONT VECTORIZE"

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 18/31

A Take Away from Optimization Studies
The test are standalone, i.e. work with extracted individual routines

Made sure the input is realistic, in fact, sampled from real data

Tests with Eigen implementation of matrix operations give up to 40%

This translates into at least 10% speed-up of the full reconstruction jobs

Significant gain in speed going from 32-bit to 64-bit compilation with at least -O2 optimization flags

STAR has not switched to 64-bit builds yet

A 64-bit STAR libraries are build centrally with cons but in non-optimized mode

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 19/31

Switching from 32-bit to 64-bit Builds
An extensive study has been performed to evaluate divergences in reconstruction chain output under
assumption of only "technical" modifications

A change that does not affect the logic of the algorithm. E.g. change in precision of some internal
calculations or compilation flags affecting certain CPU instructions

In statistics and information theory, a statistical distance can quantify the difference between two
samples

We considered the Kolmogorov-Smirnov (KS) and Wasserstein metrics (aka the earth mover's
distance (EMD))

More details available in the notebook launchlaunch binderbinder Identifying Small Changes in Algorithm Output

https://mybinder.org/v2/gh/plexoos/pub-docs/master?filepath=star-32-vs-64-build%2Fstat_dist.ipynb

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 20/31

Comparison of Cumulative PDFs of Two Samples

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 21/31

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 22/31

Additional Checks and Use Cases
In addition to KS and EMD metrics we directly count the maximum number of consecutive values
from same data set

All the KS, EMD, and direct count give similar correlated results

An additional effort can be made to formalize the requirements and limitations of the method

Improve documentation

Use in quick tests for refactoring and similar changes

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 23/31

Switching from 32-bit to 64-bit Builds
Some differences were confirmed by analyzing the assembly code

One example:

Such rounding differences include cases where result of a calculation is cast to a single precision
and then passed to other routines

As a result all the differences between 32 and 64-bit results are well understood

In fact, we confirmed that identical results can be produced

By fixing the above conversions in the code

By forcing SSE instruction set in 32-bit builds

Vice versa, switching to FPU in 64-bit is not feasible as it also requires a rebuild of the standard
libraries

https://gcc.godbolt.org/z/Diy0T8

https://gcc.godbolt.org/z/Diy0T8

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 24/31

Switching from 32-bit to 64-bit Builds

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 25/31

Switching from 32-bit to 64-bit Builds

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 26/31

The Time Projection Chamber (TPC) is the
primary tracking device of the STAR detector

Located inside a large solenoidal magnet
that operates at 0.5 T

The TPC is 4 m long and 4 m in diameter

The paths of primary ionizing particles
passing through the gas volume are
reconstructed from the released secondary
electrons which drift to the readout end caps
at the ends of the chamber

13 inner and 32 outer pad rows

Below image represent TPC geometry as seen
by the track reconstruction software

Note: Tracking layers extend beyond the nominal dimension from -200 to
+200 cm to accommodate prompt hits

TPC has undergone major upgrades in 2017
and 2018

Upgrade of STAR TPC Detector

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 27/31

Software Updates for TPC Upgrade

In 2018 the number of tracking layers in TPC was tripled in a single inner sector

In 2019 all inner sectors of TPC were upgraded

Full-length layers shown in grey, half-length layers shown in magenta and purple

Increased number of tracking layers required significant changes in reconstruction software

We made sure the past results are fully reproducible after introduction of modifications

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 28/31

Reconstruction of Tracks in 2018 Instrumental Run

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 29/31

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 30/31

STAR picoDST Data Format

In STAR muDST (aka DST, micro DST) is the primary output format used by all physics analyses

The format is based on objects of same type packed in ROOT's TCloneArrays attached to a common TTree as
TBranches

Cross references between entities within event are implemented with raw indices

With increasing luminosity the need for a more compact format for user analyses become apparent. The picoDST was
proposed

In the initial version some observables were packed/unpacked in 16-bit integer with preset ranges and scale factors

There was lots of confusion on how Double32_t and Float16_t work so, was
carried out to verify the performance and confirm the usage benefits

Later a non-S&C maintainer was assigned. Missed opportunities due to no interest (or knowledge?)

Step away from muDST design by providing a more generic interface to add, activate/deactivate branches (i.e. by hiding
raw pointers, utilizing template functions, std::tuples of branches)

Support backward compatible schema evolution (IMO, one of the powerful but underused features of IO in ROOT)

a study with various packing options

https://plexoos.github.io/my-tests/root-branch-compress/

9/20/2019 Summary of Select Activities

https://plexoos.github.io/pub-docs/npps-intro-activities/#/ 31/31

uproot
Using Python visualization and data analysis libraries one quickly realizes the need for a Python
reader for files in ROOT format

Among the available options uproot stands out because it does not depend on C++ ROOT,
unlike PyROOT and root_numpy

uproot is well supported and has become one of the most widely used Python packages made for
particle physics with users from LHC experiments, theory, neutrino experiments, XENON-nT, MAGIC,
and IceCube

To be used with STAR files the package was missing the functionality to read TTree branches with
truncated floating point numbers such as Float16_t and Double32_t

This functionality has been implemented along with the corresponding unit tests so, now STAR
users can read files in both muDST and picoDST formats with uproot

https://github.com/scikit-hep/uproot

https://github.com/scikit-hep/uproot

