High Energy / Nuclear Theory / RIKEN seminars

[NT/RIKEN seminar] Probing Quark-Gluon Plasma at high resolution

by Amit Kumar

CFNS 2-38 (Bldg. 510)

CFNS 2-38

Bldg. 510


In the study of the quark-gluon plasma (QGP) in high-energy heavy-ion collisions, jet quenching plays an essential role as hard probes of the properties of the dense strongly interacting matter. In this talk, we present an attempt to probe the underlying structure of the quark-gluon plasma (QGP) at high resolution, based on the extracted jet transport coefficient \hat{q}. We argue that the exchanged momentum k between the hard parton and the medium varies over a range of scales, and for k ≥ 1 GeV, \hat{q} can be expressed in terms of a parton distribution function (PDF). Calculations, based on this reconstructed \hat{q} are compared to data sensitive to the hardcore of jets i.e., the single hadron suppression in terms of the nuclear modification factor R_{AA} and the azimuthal anisotropy parameter v_{2}, as a function of transverse momentum p_{T}, centrality and energy of the collision. It is demonstrated that the scale evolution of the QGP-PDF is responsible for the reduction in the normalization of \hat{q} between fits to Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) data; a puzzle, first discovered by the JET collaboration.