Neutrino Propagation in Matter: 3 flavors \& beyond

Stephen Parke Fermilab

https://orcid.org/0000-0003-2028-6782

v.
with Peter Denton, Xining Zhang + other collaborators

Wolfenstein Matter Effect:

— coherent forward scattering

Z: same for all flavors W: ν_{e} only

L. Wolfenstein, PRD 17 (1978)

$$
\begin{array}{r}
\sqrt{2} G_{F} N_{e} \sim \frac{\Delta m^{2}}{2 E_{\nu}} \\
N_{e} \text { is } \# \text { density of e's }
\end{array}
$$

- Solar neutrinos $E_{\nu} \sim 10 \mathrm{MeV}$
$\Delta m_{\odot}^{2} \sim 7.5 \times 10^{-5} \mathrm{eV}^{2}$ and $\rho \sim 150 \mathrm{~g} . \mathrm{cm}^{-3}$
- Accelerator neutrinos $E_{\nu} \sim 10 \mathrm{GeV}$
$\Delta m_{a t m}^{2} \sim 2.5 \times 10^{-3} \mathrm{eV}^{2}$ and $\rho \sim 3 \mathrm{~g} . \mathrm{cm}^{-3}$

mass

$E_{\nu}<1 \mathrm{MeV}\left(\mathrm{pp} \&{ }^{7} \mathrm{Be}\right)$
$<P_{e e}>\sim 0.58$
Vac. Osc.
Ray Davis

$$
\sqrt{2} G_{F} N_{e} \sim \frac{\Delta m^{2}}{E_{\nu}}
$$

$E_{\nu}>10 \mathrm{MeV}\left({ }^{8} \mathrm{~B}\right.$ \& hep $)$

BNL/YITP

Solar Neutrinos:

Vacuum:

 averaged osc $\sim 68 \% \nu_{1}$$\sim 30 \% \nu_{2}$
$\sim 2 \% \nu_{3}$

MSW:
$>90 \% \nu_{2}$

matter effect

Nunokawa, SP, Zukanovich-Funchal arXiv:hep-ph/0601198

NOBEL 2015

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

"for the discovery of neutrino flavor transformations, which shows that neutrinos have mass"
~ vacuum
oscillations
See Smirnov arXiv:1609.02386

Wolfenstein matter effects dominant flavor transformations

Terrestrial Experiments: where Matter Effects are Important

Terrestrial Experiments: with Matter Effects

Accelerator: $\boldsymbol{\nu}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{e}}$

- T2K, T2HK (295 km)
- $\operatorname{NOvA}(810 \mathrm{~km})$
- T2HKK (1100 km)
- DUNE (1300 km)

Reactor: $\overline{\boldsymbol{\nu}}_{\boldsymbol{e}} \rightarrow \overline{\boldsymbol{\nu}}_{\boldsymbol{e}}$

- JUNO (52 km)

Atmospheric: $\nu_{\mu} \rightarrow \nu_{e}$

- ICECUBE $(13,000 \mathrm{~km})$

At 1st Osc. Peak $E_{\nu} \sim(\mathrm{L} / 500 \mathrm{~km}) \mathrm{GeV}$

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

Normal Ordering - Inverted Ordering

T2K \& NOvA:

T2K

NOvA

T2K Run 1-9 preliminary

NOvA Preliminary

Neutrino Flavor or Interaction States:

$$
\boldsymbol{W}^{+} \rightarrow e^{+} \boldsymbol{\nu}_{e}
$$

$$
W^{+} \rightarrow \mu^{+} \nu_{\mu}
$$

$$
\boldsymbol{W}^{+} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\nu}_{\boldsymbol{\tau}}
$$

provided $\boldsymbol{L} / \boldsymbol{E} \ll \mathbf{0 . 5} \mathrm{km} / \mathrm{MeV}=\mathbf{5 0 0} \mathrm{km} / \mathrm{GeV}$!!!
~ 1 picosecond in Neutrino rest frame !!!

ҰNeutrino Mass EigenStates or Propagation

 States:Propagator $\nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}$

unitary matrix

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

by defn $\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{2}$
$U_{P M N S}=U_{23}\left(\theta_{23}, \delta\right) U_{13}\left(\theta_{13}, 0\right) U_{12}\left(\theta_{12}, 0\right) \quad$ Why this order ???

$$
\begin{gathered}
=\left(\begin{array}{ccc}
\mathbf{1} & c_{23} & s_{23} e^{+i \delta} \\
& -s_{23} e^{-i \delta} & \boldsymbol{c}_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & & s_{13} \\
& \mathbf{1} & \\
-s_{13} & & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & \\
-s_{12} & c_{12} & \\
& & \mathbf{1}
\end{array}\right) \\
s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j}
\end{gathered}
$$

Towards a better understanding of Osc. Prob.

Globes,
while a very useful tool, is not enough !

Hamiltonian:

flavor/interaction basis:

$$
\frac{1}{2 E}\left\{U\left(\begin{array}{ccc}
0 & & \\
& \Delta m_{21}^{2} & \\
& & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
a & & \\
& 0 & \\
& & 0
\end{array}\right)\right\}
$$

vac. mass eigenstate basis

$$
\begin{aligned}
& \frac{1}{2 E}\left\{\left(\begin{array}{ccc}
0 & & \\
& \Delta m_{21}^{2} & \\
& & \Delta m_{31}^{2}
\end{array}\right)+U^{\dagger}\left(\begin{array}{ccc}
a & & \\
& 0 & \\
& & 0
\end{array}\right) U\right\} \\
& \boldsymbol{a} \equiv \mathbf{2} \sqrt{\mathbf{2}} \boldsymbol{G}_{\boldsymbol{F}} \mathbf{N}_{e} \boldsymbol{E} \\
&
\end{aligned}
$$

arbitrary"a"

Eigenvalues: Analytically or Numerically

$$
\text { with Minimum } \Delta{\widehat{m^{2}}}_{32}=\Delta m_{e e}^{2} \sin 2 \theta_{13}
$$

$$
\Delta m_{e e}^{2} \equiv c_{12}^{2} \Delta m_{31}^{2}+s_{12}^{2} \Delta m_{32}^{2}
$$

Occurs at $a=\Delta m_{21}^{2} \cos 2 \theta_{12} / c_{13}^{2}$ with Minimum $\Delta \widehat{m^{2}} 21=\Delta m_{21}^{2} \sin 2 \theta_{12}$

$$
\text { Occurs at } a=\Delta m_{e e}^{2} \cos 2 \theta_{13}
$$

ν average directly measured by Daya Bay/RENO

flavor basis:

$$
\frac{1}{2 E}\left\{U\left(\begin{array}{ccc}
0 & & \\
& \Delta m_{21}^{2} & \\
& & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{ccc}
a & & \\
& 0 & \\
& & 0
\end{array}\right)\right\}
$$

2 flavor mixing in matter

$$
a x^{2}+b x+c=0
$$

simple, intuitive, useful

$$
\begin{aligned}
& 3 \text { flavor mixing in matter } \\
& a x^{3}+b x^{2}+c x+d=0
\end{aligned}
$$

complicated, counter intuitive, ...

- Solve Cubic Characteristic Eqn.

$$
\begin{array}{r}
\lambda^{3}-\left(a+\Delta m_{21}^{2}+\Delta m_{31}^{2}\right) \lambda^{2} \\
+\left[\Delta m_{21}^{2} \Delta m_{31}^{2}+a\left\{\left(c_{12}^{2}+s_{12}^{2} s_{13}^{2}\right) \Delta m_{21}^{2}+c_{13}^{2} \Delta m_{31}^{2}\right\}\right] \lambda \\
-c_{12}^{2} c_{13}^{2} a \Delta m_{21}^{2} \Delta m_{31}^{2} \quad=0
\end{array}
$$

See Zaglauer \& Schwarzer, Z. Phys. C 1988

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{3} s-\frac{1}{3} \sqrt{s^{2}-3 t}\left[u+\sqrt{3\left(1-u^{2}\right)}\right], \\
& \lambda_{2}=\frac{1}{3} s-\frac{1}{3} \sqrt{s^{2}-3 t}\left[u-\sqrt{3\left(1-u^{2}\right)}\right], \\
& \lambda_{3}=\frac{1}{3} s+\frac{2}{3} u \sqrt{s^{2}-3 t}, \\
& s=\Delta_{21}+\Delta_{31}+a, \\
& t=\Delta_{21} \Delta_{31}+a\left[\Delta_{21}\left(1-s_{12}^{2} c_{13}^{2}\right)+\Delta_{31}\left(1-s_{13}^{2}\right)\right], \\
& u=\cos \left[\frac{1}{3} \cos ^{-1}\left(\frac{2 s^{3}-9 s t+27 a \Delta_{21} \Delta_{31} c_{12}^{2} c_{13}^{2}}{2\left(s^{2}-3 t\right)^{3 / 2}}\right)\right],
\end{aligned}
$$

- then calculate mixing angles in matter or mixing matrix, V : eg Kimura Takamura \& Yokomakura PLB, PRD 2002
here $\Delta_{i j} \equiv \Delta m_{i j}^{2}$

both analytic \& numerical are black boxes

Hamiltonian:
H. Minakata + SP arXiv:I505.01826
P. Denton + H. Minakata + SP arXiv:I604.08I67
$H=\frac{1}{2 E}\left\{U\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & \Delta m_{21}^{2} & 0 \\ 0 & 0 & \Delta m_{31}^{2}\end{array}\right] U^{\dagger}+\left[\begin{array}{ccc}a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\right\}$
Rewrite as $\boldsymbol{H}=\boldsymbol{H}_{0}+\boldsymbol{H}_{1}$

solvable

perturbation
where H_{0} is diagonal

$$
\text { and } H_{1} \text { is off-diagonal. }
$$

small \#'s $\quad \epsilon \equiv \frac{\Delta m_{21}^{2}}{\Delta m_{e e}^{2}} \sim 0.03 \quad \sin ^{2} \theta_{13} \sim 0.02$

$$
U_{23}^{\dagger}\left(\theta_{23}, \delta\right) H U_{23}\left(\theta_{23}, \delta\right)=H_{D}+H_{O D}
$$

$$
D=\text { diagonal } O D=\text { off-diagonal }
$$

$(2 E) H_{D}=\left[\begin{array}{lll}a+s_{13}^{2} \Delta m_{e e}^{2} & & \\ & \left(c_{12}^{2}-s_{12}^{2}\right) \Delta m_{21}^{2} & \\ & & c_{13}^{2} \Delta m_{e e}^{2}\end{array}\right]$

naturally appears: $\quad \Delta m_{e e}^{2} \equiv c_{12}^{2} \Delta m_{31}^{2}+s_{12}^{2} \Delta m_{32}^{2}$
!!! level crossing !!!

The Method:

- Rotation in 1-3 sector to diagonalize that sector: $\widehat{\theta}_{13}$
- removes 1-3 level crossing
- Rotation in 1-2 sector to diagonalize that sector: $\widehat{\theta}_{12}$ - removes 1-2 level crossing
- Perform Perturbation expansion in $H_{O D}$ after these two rotations:

vacuum rot.

matter rot.
pert. exp.

same order as vac rot: $\quad \epsilon^{\prime} \quad\left(\epsilon^{\prime}\right)^{2} \quad\left(\epsilon^{\prime}\right)^{3}$

$$
\epsilon^{\prime} \equiv \sin \left(\widetilde{\theta}_{13}-\theta_{13}\right)\left(s_{12} c_{12}\right)\left(\frac{\Delta m_{21}^{2}}{\Delta m_{e e}^{2}}\right)<0.015
$$

The Method (conti):

$$
\frac{(2 E) H_{O D}}{\Delta m_{e e}^{2}}=\sin \left(\widehat{\theta}_{13}-\theta_{13}\right) s_{12} c_{12}\left(\frac{\Delta m_{21}^{2}}{\Delta m_{e e}^{2}}\right)\left(\begin{array}{ll}
& -\sin \widehat{\theta}_{12} \\
& \cos \widehat{\theta}_{12}
\end{array}\right)
$$

- Vanishes in vacuum, as $\widehat{\theta}_{13}=\theta_{13}$ (same order important)
- Is small, ≤ 0.015
(arXiv:I907.02534)
- And diagonal (by construction) plus one other element is zero : \Longrightarrow Implies ALL odd perturbative corrections to eigenvalues are zero !!! Therefore for eigenvalues expansion parameter is $\leq 2 \times 10^{-4}$

Corrections to Eigenvalues:

Denton, SP, Xining Zhang: arXiv: I 907.02534

Mixing Angles (eigenvectors) from Eigenvalues:

$\left.\left(\begin{array}{cc}\lambda_{\sigma} & \\ & \lambda_{\rho}\end{array}\right)=U(\phi)^{\dagger}{ }_{\lambda_{a}} \lambda_{x} \lambda_{c}\right) U(\phi)$

$$
U(\phi) \equiv\left(\begin{array}{cc}
c_{\phi} & s_{\phi} \\
-s_{\phi} & c_{\phi}
\end{array}\right)
$$

$\left|U_{11}\right|^{2}=\cos ^{2} \phi=\frac{\lambda_{\sigma}-\lambda_{c}}{\lambda_{\sigma}-\lambda_{\rho}} \quad\left|U_{12}\right|^{2}=\sin ^{2} \phi=\frac{\lambda_{\sigma}-\lambda_{a}}{\lambda_{\sigma}-\lambda_{\rho}}$
arXiv:I 604.08I67:Appendix A
Can this be generalized to 3×3 ?

Generalization to 3×3 :

$$
\left|\widehat{U}_{\alpha i}\right|^{2}=\frac{\left(\lambda_{i}-\xi_{\alpha}\right)\left(\lambda_{i}-\chi_{\alpha}\right)}{\left(\lambda_{i}-\lambda_{j}\right)\left(\lambda_{i}-\lambda_{k}\right)}
$$

- λ_{i} are eigenvalues of original matrix, 3×3
- ξ_{α} and χ_{α} are eigenvalues of original matrix with α row \& α column removed, 2×2

Can this be generalized to $n \times n$?

Denton, SP, Xining Zhang: arXiv: | 907.02534

Generalization to nxn:

- Let H be an nxn Hermitian matrix with eigenvalues $\lambda_{i}(H)$ and eigenvectors v_{i}
- Let h_{j} be the $(\mathrm{n}-1) \times(\mathrm{n}-1)$ Hermitian matrix from H with j -th row and j -th column deleted with eigenvalues $\lambda_{i}\left(h_{j}\right)$

$$
\left|v_{i, j}\right|^{2}=\frac{\prod_{k=1}^{n-1}\left(\lambda_{i}(H)-\lambda_{k}\left(h_{j}\right)\right)}{\Pi_{k=1, k \neq i}^{n}\left(\lambda_{i}(H)-\lambda_{k}(H)\right)}
$$

- Phase information is a more complicated expression.
- Numerator is characteristic function for h_{j} evaluated at $\lambda_{i}(H)$
- Normalized $\sum_{i}\left|v_{i, j}\right|^{2}=1=\sum_{j}\left|v_{i, j}\right|^{2}$

The eigenvalues then give us the eigenvectors (mixing angles)

Oscillation Probabilities:

Adding Sterile Neutrinos: 3+I

Intrinsic CPViolation:

$$
J \equiv s_{23} c_{23} s_{13} c_{13}^{2} s_{12} c_{12} \sin \delta
$$

CPV:
in Vacuum:

$$
\nu_{\mu} \rightarrow \nu_{e}
$$

$$
\Delta_{j k} \equiv \frac{\Delta m_{j k}^{2} L}{4 E}
$$

$$
\widehat{J} \approx \frac{J}{S_{\odot}(a) S_{a t m}(a)}
$$

S 's are two flavor resonance factors: a Solar and an Atmospheric one

$$
\begin{aligned}
S_{\odot}(a)= & \sqrt{1-2 \cos 2 \theta_{12}\left(\frac{c_{13}^{2} a}{\Delta m_{21}^{2}}\right)+\left(\frac{c_{13}^{2} a}{\Delta m_{21}^{2}}\right)^{2}}=\left|1-\left(\frac{c_{13}^{2} a}{\Delta m_{21}^{2}}\right) e^{i 2 \theta_{12}}\right| \\
& c_{13}^{2} \text { correction to matter potential is important }
\end{aligned}
$$

$$
S_{a t m}(a)=\sqrt{1-2 \cos 2 \theta_{13}\left(\frac{a}{\Delta m_{e e}^{2}}\right)+\left(\frac{a}{\Delta m_{e e}^{2}}\right)^{2}}=\left|1-\left(\frac{a}{\Delta m_{e e}^{2}}\right) e^{i 2 \theta_{13}}\right|
$$

$\Delta m_{e e}^{2}$ not $\Delta m_{31 / 32}^{2}$ for position of the resonance is important

Denton + SP arXiv: I902.07I85

Fractional error for this approximation is 0.04% :

$$
s_{13}^{2}\left(\Delta m_{21}^{2} / \Delta m_{e e}^{2}\right) \text { and }\left(\Delta m_{21}^{2} / \Delta m_{e e}^{2}\right)^{2}
$$

In Terms of Angles

$$
J \equiv s_{23} c_{23} s_{13} c_{13}^{2} s_{12} c_{12} \sin \delta
$$

$\sin 2 \widehat{\theta}_{23} \sin \widehat{\delta}=\sin 2 \theta_{23} \sin \delta$.

$$
s_{\widehat{13}} c_{\widehat{13}} \approx s_{13} c_{13} / \mathcal{S}_{\mathrm{atm}}
$$

Toshev ID exact

DMP2016: +0.4\%
$c_{13} \beta_{\widehat{12}} c_{\widehat{12}} \approx c_{13} s_{12} c_{12} / \mathcal{S}_{\odot}$ DP2019: -0.4\%

Combined 0.04\%
(cancellation)

$\nu_{e} \rightarrow V_{e}$

$P_{a}\left(\nu_{e} \rightarrow \nu_{e}\right) \approx 1-\sin ^{2} 2 \theta_{13}\left(\frac{\Delta m_{e e}^{2}}{\Delta \widehat{m}_{e e}^{2}}\right)^{2} \sin ^{2} \widehat{\Delta}_{e e}, \quad \widehat{\Delta}_{e e} \equiv \Delta \widehat{m^{2}} e e L /(4 E)$,

$$
\Delta \widehat{m^{2}} e e \approx \Delta m_{e e}^{2} \sqrt{\left(\cos 2 \theta_{13}-a / \Delta m_{e e}^{2}\right)^{2}+\sin ^{2} 2 \theta_{13}},
$$

Denton, SP 1808.09453

$\Delta m_{e e}^{2}$ and Daya Bay

RENO 2200 days

What is
Daya Bay 1958 days

$$
P_{x}\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=\begin{aligned}
& 1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21} \\
& -\sin ^{2} 2 \theta_{13}\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right)
\end{aligned}
$$

$$
\Delta m_{31}^{2}=\Delta m_{e e}^{2}+s_{12}^{2} \Delta m_{21}^{2} \quad \text { and } \quad \Delta m_{32}^{2}=\Delta m_{e e}^{2}-c_{12}^{2} \Delta m_{21}^{2}
$$

$$
\text { where } \Delta m_{e e}^{2}=c_{12}^{2} \Delta m_{31}^{2}+s_{12}^{2} \Delta m_{32}^{2}
$$

DB: $\Delta_{e e} \sim \pi / 2$ and $\frac{\Delta m_{21}^{2}}{\Delta m_{e e}^{2}} \sim 0.03$, then $\Delta_{21} \sim \pi / 60$ perform Taylor Series expansion:

$$
P_{\text {xshort }}\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=1-c s^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}
$$

$$
\left.-\sin ^{2} 2 \theta_{13} \quad \sin ^{2}\left|\Delta_{e e}\right|+\sin ^{2} \theta_{12} \cos ^{2} \theta_{12} \Delta_{21}^{2} \cos \left(2\left|\Delta_{e e}\right|\right)\right]
$$

No linear term in Δ_{21}

- $P_{e e} \approx 1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}-\sin ^{2} 2 \theta_{13} \sin ^{2} \Delta_{e e}$

$$
\text { where } \Delta m_{e e}^{2}=c_{12}^{2} \Delta m_{31}^{2}+s_{12}^{2} \Delta m_{32}^{2}
$$

$\frac{\Delta \boldsymbol{P}}{\boldsymbol{P}} \sim 10^{-4}$ for Daya Bay and RENO

H. Nunokawa, S. J. Parke and R. Zukanovich Funchal,
"Another possible way to determine the neutrino mass hierarchy,"
Phys. Rev. D 72, 013009 (2005), hep-ph/0503283

SP arXiv:I60I. 07464

Daya Bay I:

- $P_{e e} \approx 1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}-\sin ^{2} 2 \theta_{13} \sin ^{2} \Delta_{Y Y}$ fit with constant $\Delta m_{Y Y}^{2}$

$$
\Delta m_{Y Y}^{2} \equiv\left(\frac{4 E}{L}\right) \arcsin \left[\sqrt{\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right)}\right]
$$

$$
\left(\text { or } \sin ^{2} \Delta_{Y Y} \equiv \cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right)
$$

arXiv:1310.6732 + |505.03456v|

Daya Bay 2

$$
\begin{aligned}
& \Delta m_{e e}^{2}(\mathrm{DB} 2) \equiv \\
& \quad \Delta m_{32}^{2}+\frac{2 E}{L} \arctan \left(\frac{\sin 2 \Delta_{21}}{\cos 2 \Delta_{21}+\tan ^{2} \theta_{12}}\right)
\end{aligned}
$$

Still L/E dependent:

OK for Daya Bay but not useful JUNO

$$
\begin{aligned}
& \Delta m_{e e}^{2}(\mathrm{DB} 2)=\Delta m_{e e}^{2}(\mathrm{NPZ}) \\
& \quad+\Delta m_{21}^{2}\left(\cos 2 \theta_{12} \sin ^{2} 2 \theta_{12} / 6\right) \Delta_{21}^{2}+\ldots
\end{aligned}
$$

Daya Bay has three independent Δm^{2} analyses/measurements:

$$
\Delta m_{e e}^{2},\left|\Delta m_{32}^{2}\right|_{N O},\left|\Delta m_{32}^{2}\right|_{I O}
$$

$$
\text { if } \quad \Delta m_{e e}^{2} \equiv c_{12}^{2} \Delta m_{31}^{2}+s_{12}^{2} \Delta m_{32}^{2} \quad \text { then }
$$

$$
\frac{1}{2}\left(\left|\Delta m_{32}^{2}\right|_{I O}+\left|\Delta m_{32}^{2}\right|_{N O}\right)=\Delta m_{e e}^{2}
$$

$$
(D B) 2.523 \pm 0.069=2.522 \pm 0.069(D B), \quad \text { in units of } 10^{-3} \mathrm{eV}^{2}
$$

$\left|\Delta m_{32}^{2}\right|_{I O}-\left|\Delta m_{32}^{2}\right|_{N O}=2 \cos ^{2} \theta_{12} \Delta m_{21}^{2}$

$$
\begin{aligned}
(D B) 0.104 & \pm 0.097=0.104 \pm 0.004\left(P D G^{\prime} 18\right), \quad \text { in units of } 10^{-3} \mathrm{eV}^{2} \\
\sim 93 \% & \sim 4 \%
\end{aligned}
$$

Not independent !

Δm_{21}^{2} and Daya Bay/RENO

Dependence on Solar Parameters:
 (monte carlo)
 S.H. Seo and SP arXiv:I808.09I 50

If Δm_{21}^{2} is 3 times bigger, P_{12} is 9 times larger ! dependence is on $\sin 2 \theta_{12} \Delta m_{21}^{2}$

Daya Bay 1958 days

Simultaneous Fit: $\quad \sin ^{2} \theta_{13}, \Delta m_{e e}^{2}$ and Δm_{21}^{2}
Alvaro Hernandez-Cabezudo, SP, and Seon-Hee Seo arXiv:1905.09479

$2.3 \times$ KamLAND at 95\% CL

Summary:

- from Nul998 to now, tremendous progress on nuSM
- Wolfenstein matter effects play an extremely important role in Neutrino Flavor Transformation Physics
- 3 flavor mixing in Matter (and vacuum) needs better understanding as we enter the precision era
- to discover New Physics we need to understand and stress test the nuSM with superb precision

