eRD14 EIC-PID review meeting

PHOTOSENSORS

JUNQI XIE

Medium Energy Physics Group Argonne National Laboratory 9700 S Cass Ave., Lemont, IL 60439 jxie@anl.gov

Sep 19, 2019

1

PHOTOSENSOR WORKGROUP

Argonne 6cm MCP-PMT development:

Argonne National Laboratory Junqi Xie, Edward May, Lei Xia, Robert Wagner (Soon: Zein-Eddine Meziani) Brookhaven National Laboratory Mickey Chiu Florida A&M University Stacyann Nelson, Carol Scarlett

Commercial MCP-PMT testing:

University of South Carolina Yordanka Ilieva, Brandon Tumeo Jefferson Lab Carl Zorn, Jack McKisson Catholic University of America Greg Kalicy University of New Hampshire Tongtong Cao University of Indiana Colin Gleason SiPM testing:

INFN groups

PHOTOSENSOR OPTIONS

3

Commercial products

R&D only

	Planacon	SiPM	LAPPD	Argonne MCP-PMT
Area	6cm x 6cm		20cm x 20cm	6cm x 6cm
Pixel	3x3 mm available	3x3 mm available	25x25 mm available 3x3 mm needs test	3x3 mm demonstrated, needs full device validation
Magnetic field	Yes	Yes	0.7 T, needs 10um MCPs for > 1.5 T	> 1.5 T
Radiation	Yes	Need test	Expect good	Expect good
Availability	In-stock	In-stock	In-stock for 20 um, in 2 years for 10 um	Mar 2020
Price	\$15-20 k/each, Significant cheaper in large unit	\$1 /mm ² ?	\$50 k/ each now \$25 k/ each 4 years later based on Incom	-
Unit price	\$12.5k /25cm ² Cheaper in large	\$2.5k /25cm ²	\$3.125k /25cm ² now or \$1.56k /25cm ² future Gen-III unknown	-
Concerns	No, except expensive for R&D	Radiation hardness	Cross talk, integration availability	-
Risk	No risk	No risk if radiation is OK	Achievable with risk, Gen-II, III LAPPD design	R&D only

*Photek MCP-PMT is also a potential option for commercial small-pixel MCP-PMTs although not listed in details here.

ARGONNE MCP-PMT R&D STATUS

Optimize LAPPD design on Argonne whole glass/fused silica MCP-PMT design specifically for EIC-PID:

Mature and low-cost fabrication technique, high yield, Incom integrated in Gen I LAPPD

Magnetic field tolerance and timing improvement

Magnetic field tolerance

1.3 Tesla

> 1.5 Tesla

0.7 Tesla

4

ARGONNE MCP-PMT R&D STATUS

Fine pixel size development

3mm x 3mm pixel size with <1 mm position resolution demonstrated with MCP stack in dynamic vacuum chamber

MWPC tracking used

4 different pixel sizes (2x2,3x3,4x4 and 5x5 mm²) implemented for testing

40

Fine pixel size (2~5x mm²)

Pixel size	X res (mm)	Y res (mm)		
2x2 mm ²	1.4	1.7		
3x3 mm ²	0.94	0.95		
4x4 mm ²	0.81	0.76		
5x5 mm ²	1.1	0.97		

Capacitively coupled through glass anode, confined charge sharing helps position resolution

 σ =0.94 mm with 3x3 mm² pixels

ARGONNE MCP-PMT R&D PLANS

FY2020

6cm MCP-PMT:

The most critical issues of magnetic field (>1.5 T), fine pixel size (3x3 mm²) and timing resolution RMS (100 ps) were all demonstrated at current R&D stage. The next step is to demonstrate integrated 6cm MCP-PMT device with above performance.

Two 6cm pixelated MCP-PMTs with integrated design will be fabricated and placed in Fermilab beamline for testing together with pixel readout and BNL zigzag readout.

FY2021 - 23

Identify MCP-PMTs with different ALD coated MCPs (MgO, Al₂O₃ etc), performance comparison in magnetic fields to study why ALD affects the gain dependence on the magnetic field as committee recommended.

Current status of LAPPD: Gen I Gen I LAPPD: Glass body, mature sealing process, high yield from Incom. Fused silica window with photocathode on 22 cm 23 cm inside surface 20 cm x 20 cm MCPs, spacers 2.1 cm Micro-strip Signal readout, both ends anode and of 28 micro-strip lines sidewall HV Tabs to power MCPs

Signal & HV pass under frit bonded side walls. Stripline, not pixelated

Current status of LAPPD: Gen II

NP-SBIR supporting through Phase I, II and IIA: Development of Gen-II LAPPD[™] Systems For Nuclear Physics Experiments

Pixelated Gen II LAPPD is available at Incom with 25 mm × 25 mm pixel size.

How does the ceramic capacitive coupling work with fine pixel (3~6 mm) sizes? What is its smallest pixel size with acceptable signal spread and cross talk?

LAPPD DELIVERY PLANS FROM INCOM

Michael Minot, Incom LAPPD R&D director

INCOM GEN-II LAPPD PLANS

Incom is under NP-SBIR Phase IIA contract to develop ceramic Gen-II LAPPD.

Development of Gen-II LAPPD[™] Systems For Nuclear Physics Experiments

Email exchange with Michael Minot, Incom LAPPD R&D director

The Incom development plan, as currently understood, will proceed in two steps as follows:

- Full characterization of the current baseline GEN II capabilities to meet the needs of EIC. Our GEN II LAPPD relies on capacitive coupling of the signal and the key issues to be resolve near term are
 - a. whether signal intensity drops off to a level that would require amplification for small 3mm pixels, and
 - b. whether signal quality is compromised by unwanted capacitive pulse coupling across multiple distant anode pads.

To address both of these issues we are committed to characterize GEN II LAPPD using 25mm. 12 mm, 6mm and 3mm square pixels deployed onto printed circuit boards and capacitively coupled for signal read-out to the LAPPD. The 25mm and 12mm printed circuit boards are in hand and are being used as GEN II LAPPD are available for test. Printed circuit boards with 6mm and 3mm pixelated anodes are being designed by the ANL electronics group in a joint effort between Incom and Bob Wagner and Junqi Xie at ANL. Testing of these boards will commence as soon as they are available.

Signal spread and cross talk is a big concern on ceramic Gen II LAPPD, needs immediate validation for its performance with 3~6 mm pixel sizes.

Argonne electronic engineers are modifying Incom 25mm x 25mm adaptor board for 3~6 mm pixel sizes, expecting test results in Jan 2020.

INCOM GEN-II LAPPD PLANS

Summary of the Three Phase Approach

Incom is adopting a 3-phase approach to address the needs of the nuclear physics community.

- 1. Through the current Phase IIA SBIR program, fully characterize and optimize the Gen-II LAPPD readout.
 - Maximize coupling to the external readout board my minimizing the anode thickness while maintain mechanical stability
 - Optimize the internal resistive anode by exploring materials, patterns, and resistivity
 Design and test the limits of a pixelated readout board
- Use a 10 cm × 10 cm version of the Gen-II LAPPD to further optimize detector design,
 - Taking advantage of the 10 μm pore MCPs
 - Reduced gap spacing for improved timing resolution and B-Field tolerance
 - An unobstructed FOV (no window support)
- Development of a novel anode to advance the LAPPD performance beyond what is capable in the current designs
 - Decouple the electrical and mechanical properties of the anode so each can independently optimized.
 - Preparing phase I DOE SBIR proposal (funding period Feb-Nov 2020)

9/16/2019

Future LAPPD and HRPPD Development Meeting

Incom direct meeting with Pawel and Yordanka

Current Gen-II 10 cm Detector Development

With proven R&D results and emphasis on NP request, Incom starts integration of Argonne's input:

A 10x10 cm² Gen II LAPPD with 10um MCP-PMTs and reduced spacing, delivery in Jan 2020.

Jan, 2020

INCOM GEN-III LAPPD PLANS

Email exchange with Michael Minot, Incom LAPPD R&D director

 Large Area Multi-Anode MCP-PMT for High Rate Applications - The ultimate goal of this program is to demonstrate over the next two years, the readiness of LAPPD, equipped with a 2-3 mm pixelated anode, to perform with high spatial (≤1 mm²) and timing (<10 ps) resolution at rates ≥200 kHz/cm² in a high radiation (10 Mrad with 10¹⁵ n/cm²) and large magnetic field (2-3 T) environment for time-of-flight and Cherenkov detectors with broad particle identification capabilities.

This program will proceed in steps:

- a. Fabrication of a 10cm X 10cm analogue to the full size 20cm X 20cm LAPPD this represents an important early stage milestone, which is already underway, since it we will likely be able to incorporate MCPs with 10-micro pores in this smaller device well ahead of the full size 20cm X 20cm LAPPD. In addition to the smaller pore size MCP, the gaps between components will be optimized; both of these variables are critical for timing and B-field. First prototypes will be our standard GEN II, but now with the advantage of the smaller pore MCPs, and in a tile format without X-spacers that obscure the open area.
- b. While the full limits of current baseline GEN II have not yet been fully explored innovative anode designs will ultimately be needed to go beyond the perform-commercially available detectors such as Planacon. A development plan was INP SBIR support (Letter of Intent just submitted to our DOE Program Manager build upon recent advances in the development of a second generation (GEN Picosecond Photodetector (LAPPD[™]) to develop an advanced co-fired ceramic need for a large area microchannel plate (MCP) photodetector with high rate the detector requirements of next generation nuclear physics (NP) experiment SoLID. Phase I of the program will focus on the development of the co-fired all devices made in Phase II.

A new SBIR with high temperature co-fire ceramic (HTCC) anode Gen-III LAPPD (10x10 cm²) is initiated by Incom for FY2020, with all required EIC performance integrated.

Gen-III LAPPD delivery expected in FY2021 if DOE-NP approves the 2nd SBIR.

DOE SBIR Phase I Proposal Due Oct 15, 2019 9 Month funding period starts Feb 18, 2020

ARGONNE LAPPD TESTING PLANS

FY2020

LAPPD:

Validation of Incom's current Gen II ceramic LAPPD for fine pixel size (3~6 mm) and other performance. If it works at 3~6 mm pixel size with acceptable charge sharing and cross talk, it can be directly applicable to sub-system beamline test.

If Gen II ceramic pass fine pixel test, validation of Incom's Gen-II LAPPD with 10 μ m pore size MCPs and reduced spacing upon delivery.

FY2021 - 23

Future Argonne effort within EIC-PID will focus on LAPPD full validation upon Incom's delivery, support electronics integration to MCP-PMT/LAPPD and their testing in subsystem beamline experiments.

To be conservative

Argonne commits on 6cm MCP-PMTs for EIC-PID related R&D, Incom LAPPD full characterization upon delivery.

Argonne is not under contract with Incom to develop LAPPD for NP, has no commitment on Incom Gen II, Gen III LAPPD's delivery.

ACTIVITY

Work task	FY2020	FY2021	FY2022	FY2023	Funding request	Priority	FY20	FY21 FY	22 FY23
6cm MCP-PMT					10k materials		x.x		
Fabrication of two integrated 6cm MCP-PMTs					50k effort	High, at	x.x		
Full characterization of integrated 6cm MCP-PMTs					20k effort	least one	x.x		
Fermilab beamline test with two MCP-PMTs					5k effort	MCP-PMT	x		
						fabrication			
Investigation of ALD coating on gain					50k effort			xx	
dependence in magnetic field									
LAPPD									
Gen II LAPPD minimal pixel size validation					10k effort	High	x		
Gen III LAPPD pixel performance validation					5k effort	High		x	
If LAPPD successfully delivered and acceptable									
Accepted Gen II or Gen III LAPPD full test					20k effort		xx	x x	x
Electronics integration					10k effort			x	
LAPPD delivery to sub-system Fermilab beamtest					10k effort			x x	x
More LAPPD test and delivery					LAPPD prices			x x	x
ANL/BNL/FAMU Travel					10k total		x	x x	x
						Total reques	t 115k	105k 40	k 40k
							Not i	include L	APPD price

Validation of Gen II and Gen III LAPPDs for fine pixel performance is the first priority upon Incom delivery, fabrication of Argonne design pixelated MCP-PMT for device validation is also a priority, needs two Argonne pixelated MCP-PMTs for FY2020 Spring beamline test.

Argonne's internal plans for MCP-PMT/LAPPD

Argonne (PHY/MEP) is in the process of discussing with DOE NP and SBIR office to facilitate the path for Incom to deliver the successful LAPPD with required needs for EIC.

To this end, Argonne will continue to invest in low-cost whole glass/fused silica MCP-PMT R&D, we plan to upgrade the outdated 6x6 cm² MCP-PMT facility to a practical 10x10 cm² MCP-PMT facility. The effort from PHY-MEP at Argonne will be aligned with EIC-PID Cerenkov type photosensor requirement as well as Argonne TOPSiDE gas only-RICH prototype. Furthermore, it will also serve as R&D platform for future MCP-PMT development for radio-pure environment (NLDBD), solar blind detection (Mu2e), isotope detection (TRACER) and cryogenic applications (Dark matter) for particle physics community.

COMMERCIAL MCP-PMT EVALUATION IN HIGH MAGNETIC FIELDS

Objective

Evaluation of commercial photosensors for EIC PID detectors in order to

- assess the limitations of current MCP-PMTs for high-B operations at EIC
- identify most favorable sensor orientations, i.e. tilt angle with respect to the local B-field
- investigate suitable parameters for High-B operations, i.e. most optimal voltage distribution

MCP-PMT Characterization

Gain, efficiency, timing resolution, ion feedback

 $\begin{array}{l} \text{Operational variables:} \\ \text{B, } \theta, \, \phi, \, \text{HV}, \, \text{HV}_{\text{photocathode-MCP1}}, \\ \text{HV}_{\text{MCP1-MCP2}}, \, \text{HV}_{\text{MCP2-anode}} \end{array}$

Past Activities

Large-pixel-size Planacons B-field evaluation Multi-anode Hamamatsu B-field evaluation Single-anode sensors (various small pore sizes) B-field evaluation

COMMERCIAL MCP-PMT EVALUATION IN HIGH MAGNETIC FIELDS

Timelines and Activities for TDR Readiness

Activity	FY20	FY21	FY22	FY23	Notes
Procure one unit of XP85122-S	\$6.5k				Partial cost requested in FY20. Rest of cost covered from \$10k carry-over
Cryogens and small components	\$9.7k	\$9.7k	\$9.7k	\$9.7k	
Travel	\$12.3k	\$12.3k	\$12.3k	\$12.3k	USC personnel to JLab
Student Summer Salary	\$10.8k	\$10.8k	\$10.8k	\$10.8k	Sensor measurements
Procure one unit of multi-anode Photek 6-µm sensor			\$15k		
XP85122-S Characterization					
Photek multi-anode 10-µm characterization					
Gain, timing, and uniformity characterization of MCP PMTs for DIRC prototype with HI electronics					
Characterization of potentially available multi-anode 6-µm Photek PMT					
Total cost	\$39.3k	\$32.8k	\$47.8k	\$32.8k	

