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Introduction
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FIG. 1: The six event topologies.
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I Data from colliders is high-dimensional.
I Even at the parton level, there are often several final state particles

(each with three momentum components).
I Inferences about the underlying (possibly new) physics has to be made

from the distribution of this high-dimensional data.

I In this talk we will
1. Identify the kinematic features in the distribution of events from

some common event topologies with missing final state particles.
2. Look at a new approach to seeing/exploiting these features

(especially high-dimensional features).
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Part 1:

What are the

features in

data?

Part 2:

How do we

see them?
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Kinematic constraints

What controls the distribution of momenta of parton
level final state particles for a given diagram?

Kinematic constraints:

1. Invariant mass constraints
(resonances)

2a. Total transverse momentum
constraint (hadron collider)

2b. Total 4-momentum constraint
(lepton collider)

Everything else:

PDFs, Spin correlations... QFT,
detector effects

Hypothesis for underlying event
topology
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Kinematic constraints
Given a sample of signal events from some diagram (possibly with
invisible final state particles)

Assumptions

I Unknown intermediate particle
masses

I Unknown invisible final state
particle masses

I Perfect detectors
I No width effects. All particles

on-shell
I No combinatorial ambiguities

Question: What features do kinematic constraints introduce?

The assumptions about the data are far from realistic.
But invariant mass as an event variable is derived from this kind of
consideration.
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1. Constraints add features

We’ll build intuition with cartoons, using two or three dimensional
toy examples as proxy for our high dimensional data.

Unconstrained 2-d
data

x = y

“1-d feature in 2-d
space”

x2 + y2 = c

“1-d feature in 2-d
space”

Each constraint reduces the dimensionality of the space
our data lies on by 1.
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1. Constraints add features

Examples

(p1 + p2)2 = M2

5-d feature in 6-d space

(p1 + p2)2 = M2
0

(p1 + p2 + p2)2 = M2
1

7-d feature in 9-d space

The shape of the allowed subspace or “feature” is
parametrized by the unknown masses
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2. Missing particles & dimentionality reduction

introduce projections

I A particle being invisible means that the data available to us is
a projection of the full phase-space onto the visible subspace.

I If we construct a low dimensional event variable (say, invariant
mass and transverse momentum) and only analyze their
distribution, we are looking at the projection of the visible data
on that subspace.
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3. Projections can kill features

To see a feature we need to be on a space
at least one dimension higher

Otherwise we’ll say a feature is “lost”

Feature survives Feature is lost Feature is lost

I One of the goals of our work is to understand what features survive the
projection caused by some final state particles being invisible.

I Another goal is to depict the surviving kinematic features by
appropriate representation of data.
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3a. Symmetries: Projections that preserve

features
2-d feature onto 2-d 2-d feature onto 2-d

Feature is lost Feature survives

I If a projection or transformation preserves all the constraints,
we can perform it without losing a feature.

I Example: (x − xc)2 + (y − yc)
2 = R2 is preserved by z → 0

I Note: These transformations should be independent of the
unknown masses/parameters
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3b. Jacobian features
I When projecting an N-dimensional feature onto an N-dimensional

subspace, the distribution of data has singularities.
I Singularities in visible subspace occur where the solutions for invisible

momenta become degenerate (number of solutions changes).
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Jacobian feature due to (θ, φ) → (x, y)

Note: If we project an N dim feature onto < N dim subspace, the Jacobian
feature doesn’t show up.

9 / 33



3b. Jacobian features

(Modified) terminology:

visible 1

vi
sib

le
 2

visible 1

vi
sib

le
 2

1-d “delta function feature” in
2-d space

“Jacobian feature” in 2-d
space

Our papers so far focus exclusively on Jacobian features
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3b. Jacobian features

Jacobian features don’t have to be at the boundary
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Physics examples

Let’s put all these ideas together to analyze some common event
topologies.
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FIG. 1: The six event topologies.
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Physics examples

Blueprint:

1. Start with all momentum components – visible and invisible,
say Ntot .

2. Count constraints, say C in number. Find the dimensionality of
the feature in the full (vis+invis) space, say D, as Ntot − C.

3. Count number of visible momenta, say Nvis.
If Nvis > D, we have a delta function feature.
If Nvis = D, we have a Jacobian feature.
(We will not deal with the Nvis < D case in this talk)

4. Look for symmetries to exploit. These will let us retain the
feature in a low dimensional space, reducing Nvis and D
equally.
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Warmup 1: Fully visible decay topologies

Ntot = 6
C = 1

D = 6 − 1 = 5
5-d “delta feature” in 6-d space

+

Symmetries: 5
↓

0-d “delta feature” in 1-d space

Ntot = 9
C = 2

D = 9 − 2 = 7
7-d “delta feature” in 9-d space

+

Symmetries: 7
↓

0-d “delta feature” in 2-d space

Invariant mass variables capture all kinematic features in fully
visible topologies
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Warmup 2: Add an invisible particle (staying in low dimensions)

p2ν = M2
ν

(pν + pl)
2 = M2

W

®pl,T + ®pν,T = 0

Ntot = 3 + 4 = 7
C = 2 + 2 = 4
D = 7 − 4 = 3

Nvis = 3

Jacobian feature in 3-d vis space
+

Symmetries: 2
(rotation about & boost along

beam axis)
↓

Jacobian feature in 1-d vis space

I This 1-d variable is pT of the lepton, which is invariant under
rotation about & boost along beam axis.

I pT of the lepton exhibits a singularity at its endpoint.

To speed up our process, note that D = Nvis ⇔ C = Ninvis.
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Moving up in dimensions...

p2ν = M2
ν

(pν + pl)
2 = M2

W

®pl,T + ®pν,T + ®p
isr
T = 0

Ntot = 3 + 4 + 3 = 10
C = 2 + 2 = 4
D = 10 − 4 = 6

Nvis = 6

Jacobian feature in 6-d vis space
+

Symmetries: 3
(rotation about beam axis +

2 independent boosts along beam
axis)
↓

Jacobian feature in 3-d vis space

I This special 3-d space should capture ®pl ,T and ®pisr
T (minus one

rotation)
I We use | ®pisr

T |, ®pT | | and ®pT⊥ (components of ®pl ,T along and
perpendicular to ®pisr

T ).

Does the Jacobian feature actually exist?
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Yes it does!
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Antler diagram in lepton collider (optional)

p2νi = M2
ν

(pνi + pli)
2 = M2

W

®pl1 + ®pν1 + ®pl2 + ®pν2 = 0

El1 + Eν1 + El2 + Eν2 = Ecollider

Ntot = 6 + 8 = 14
C = 4 + 4 = 8
D = 14 − 8 = 6

Nvis = 6

Jacobian feature in 6-d vis space
+

Symmetries: 3 (rotations)
↓

Jacobian feature in 3-d vis space
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Antler diagram in lepton collider (optional)
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tt̄-like topology

p2νi = M2
ν

(pνi + pli)
2 = M2

W

(pνi + pli + pbi)
2 = M2

t∑
®pT = 0

Ntot = 12 + 8 = 20
C = 6 + 2 = 8

D = 20 − 8 = 12
Nvis = 12

Jacobian feature in 12-d vis space
+

Symmetries: 3
(1 rotation, 2 boosts)

↓

Jacobian feature in 9-d vis space

How do we see/exploit this feature? (part 2)
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Summary for part 1

I We have a constraint counting prescription that
characterizes the kind of kinematic feature that exists in
the distribution of (visible) data.

I If C > Ninvis, delta function feature
If C = Ninvis, Jacobian feature
If C < Ninvis, neither of these (future publication)

I Based on symmetries, we have a prescription to find the
least dimensionality of data that can retain these
kinematic features.

I In some examples, that least dimensionality is rather
high. (9 for tt̄-like topology).
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The problem

I We have 9 dim data with a Jacobian feature in it,
i.e., an 8 dimensional hypersurface where the
density of signal events will be enhanced.

I If we reduce the dimensionality of data, we lose this
feature.

Why not analyze the distribution of full 9 dim data, say,

with 9-d histograms?

Curse of dimensionality:
I Computing power needed to scan the full phase

space grows exponentially with number of
dimensions.

I Amount of data (real and MC) needed to populate
this space grows exponentially.

I MC validation in full space could be a problem.
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How does a computer see a circle?

Again, I’ll use a toy example to illustrate our method.
I Let’s say we have a picture with some points (xi, yi).

We want to know if there is a circular signal in the
picture.

I If we are guaranteed that “if a circular signal exists,
it will be centered at the origin...”

Histogram the distance of all points from the origin.
If there is a circle, there’ll be a peak in the
histogram at the correct radius.

I What if we don’t know the x-coordinate of the
center...
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Hough transform for a circle
I Assume that each point came from a circle. Let each point

vote for the parameters of the circle it could be a part of.
I If there is indeed a circle, the corresponding parameters will

receive a lot of votes. Look for peaks.
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r

“The unifying feature of points in a circle (red)
is the fact that they lie on the same circle”
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Hough transform
I What if we didn’t know the y-coordinate either? Now each

point/event will vote for a 2d surface of parameters in the
(xc, yc,r) space.

I What is the advantage of mapping a point in a 2d space to a
2d surface in 3d space?

I Now the computer doesn’t have to “see a circle” in the picture.
It just needs to look for a peak.

Port the same idea to physics processes.
I Delta features: Assume that each event came from a

given diagram. Vote for all possible mass parameters that
allow this.

I Jacobian features: Assume that every event is an
extreme event “extreme event” (degenerate solutions for
invisible momenta).
Vote for all possible mass parameters that support this
assumption.

We call this the focus points method.
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tt̄-like

arXiv:1906.02821

Assuming symmetric decay,
we have 3 mass parameters
(700 GeV, 800 GeV, 1000 GeV)
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tt̄-like It works!
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arXiv:1906.02821

Assuming symmetric decay,
we have 3 mass parameters
(700 GeV, 800 GeV, 1000 GeV)
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parameters!
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ttbar 3d heatmaps
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Brings the possibility of bump hunt to a diagram with
invisible final state particles!
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Where does the power come from?

Q: How did we retain the feature after reducing
dimensionality?

A: We did not reduce the dimensionality! These curves are
parametrized by 9 components of the visible data (out of 12).

Q: If we did not reduce the dimensionality, then how did we
overcome the curse of dimensionality?

A: We are not looking for features. We are looking for
metaphorical circles and are blind to metaphorical squares.

Each diagram will have a different Hough transform.
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Other examples...

I What we have is a generic way for capturing delta
and Jacobian features in data. There’s no reason
why it should be used only for high dimensional
features...

I Let’s use it for a fully visible 2 body decay...

I Assume the particles came from
this diagram. Vote for the parent
mass that could’ve produced it.

I This is precisely the invariant
mass!
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Other examples...
I Assume that the lepton came from

this diagram. Vote for the masses of
W and ν for which this event would be
extreme.

I This is precisely the transverse mass
variable MT !
MT is an implicit variable. It depends on Mν .
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The focus points technique is a generalization of invariant
mass and transverse mass variables.
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Other examples...
I Assume that the lepton came from

this diagram. Vote for the masses of
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Practical effectiveness...

Q: Once we include detector effects and combinatorial background,
the plots will not be as impressive? Will it still be worth doing all this
in real life.
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Practical effectiveness...

Q: Once we include detector effects and combinatorial background,
the plots will not be as impressive? Will it still be worth doing all this
in real life.

Instead of punching a strawman here...

A1: The precedent of success...

The distributions of invariant mass and MT also become less
impressive after including combinatorics and detector
resolution. Yet our choice is clear between using them and not
using them.
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Practical effectiveness...

Q: Once we include detector effects and combinatorial background,
the plots will not be as impressive? Will it still be worth doing all this
in real life.

A2:
I Empirically, chopping up the phase-space into several

categories leads to significant improvements in sensitivity
(even in the presence of detector effects).

I This is a sign that there are features in the data in high
dimensions completely missed after some projections.

I Our idea tries to extract sensitivity by tapping into the
kinematics (key) aspect of those features.
(So far our only portals to those features have been event
categorization and machine learning)
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Summary and perspective...
I We have a novel technique to capture kinematic features that

simply cannot be retained in traditional (low-dim) variables.
I Our “variables” are curves in appropriate spaces. The

technique works for a number of diagrams.
I So far our only portals to this high dimensional information has

been machine learning techniques, or chopping up the
phase-space into 10s or 100s of signal regions. These suffer
from poor interpretability.

I There’s no mistaking the meaning of a peak on a focus points
plot.

Future:
I There’s more to the Hough transform method than a peak in

the density of curves.
I Embracing them as representations of high dimensional data

opens up a world of possibilities for HE data analysis.
I Happy to discuss these after the talk.

Thank you!
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