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Cosmic rays

> 12 orders of magnitude!

« Major phenomenon in our galaxy _ o =
_ _ Sl v 4 4 percm?
— Energy density ~ star light, thermal, B { per second
field s 1 X
— Regulate the equilibrium between 'l °
the different phases of the ol

interstellar medium
— Control ionisation, heating 1
— Regulate star formation '
— Control astrochemistry , \
— Generate turbulent magnetic field [
— Produce Li, Be and B

Major unknown €

— Sources are not well known (Galactic e
and Extragal.)

— Acceleration processes are uncertain o 1 per m? per
) + billion years
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Relative Abundances

Cosmic rays

Primary cosmic rays spectrum

Power law

. av o
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y ~ 2.7
Cosmic rays composition

Depends on CR energy

— ~80% protons, ~12% helium nuclei rest
are electrons and nuclei of hevier
elements
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a AGASA - ground array
. Fly's Eye - air fluorescence
* HiRes1 mono - air fluorescence
0 HiRes2 mono - air fluorescence
HiRes Stereo - air fluorescence
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Transport through heliosphere

* SOIar Wi nd O 10" EAMS-1998° E
2 T N ;

— stream of charged particles released e
from the upper atmosphere of the 10° £ Modulated spectra

SUI’] g 10" — 2

« CRinteract with helioshere - 50
modulation of CR u=1o

- Magnetic field and solar wind depend oty
on activity of the Sun (space e e e oteev

Kinetic energy

weather)

* CR modulation increases with higher
solar and decreases when activity is

Cosmic rays (high energy)

lower.
« Solar modulation depends on energy e
of the CR ; S==__ Heli
\

« Magnetic rigidity
R =pc/ Ze.

Cosmic rays (low energy)
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Transport through heliosphere

Propagation in the heliosphere was described by Parker (1965)

equation
9f . B[ Bat
ot o
Diffusion
Small scale

magnetic field
irregoularity

Convection

Presence of the Drift

solar wind Large scale

moving outward structure of

from the Sun magnetic field
(e.g. gradients,
curvature)

f(r,R,t) — number of charged particles
per unit volume of phase space

Magnetic rigidity R
Gyroradius ry= R/ cB.
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Transport through heliosphere

of . _ K. _ Yl 2
Lav - Wf - K-7)— 307Nk = q

« Scattering of cosmic rays by turbulence Is
described by the cosmic-ray diffusion tensor

« the diagonal elements describe diffusion of
particles parallel K, ) and perpendiculiK ;
) to the mean magnetic field,

« off-diagonal, antisymmetric terms (K,)
describe effects of gradient and curvature

drift
K, K, 0
K - - KA K.L 0
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Solar activity

* Violent processes at the Sun
produces disturbance of the
heliosphere.

e This disturbance interact with
geomagnetic field.

* This interaction have disruptive
potential on our civilization.
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Solar activity

Upto30% Solar cycles (change of sunspot

number)

< 2% due to Sun’s rotation

0,5% flux anisotropy due to Earth’s
movement through heliosphere

Up to 300% additional flux of charged particles

from CME
~10% decrease due to reflection of low
energy CR from the shockwave in
heliosphere
14000
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Transport through geomagnetic field

« Geomagnetic field also affect CR
« Dipole aproximation

* R, (geomagnetic cutoff rigidity)

« Smallest rigidity for charged particle to
reach surface

R. = M cos 2
¢ 41?2
pom e ‘“q nnnnn oot
il
o / — Magnetic tai
Solar wind ’,-"
d':):‘l.rb.‘ = 'rl-.'n_"-.\“;\_\ ~~~~~~~~~~~
radiation belt /_ ------------------
Magnetopsuse =

— 1GV antiproton
— 2GV antiproton

— 4GV antiproton
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Interaction with atmosphere

* Primary CR interact with nuclei from
atmosphere
Secondary

« Secondary CR shower
— Particles that are created from the interaction

30000 m

\"’ H
20000 m

« Electromagnetic cascade
— T2y s
— y'— e+ e* pair production
— e— e +y bremsstrahlung

« Hadronic and mesonic cascade
— ptpoptAtop+n+Tt
— M>pu +v,

Concorde

10000 m

- T pw+v,
« Shower spread with every new
generation of particles

* Must be corrected with atmospheric
parameters in mind
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Interaction with atmosphere

Correction
« Correction on pressure ol 5P
— B barometric coefficient I )p =k

Correction on temperature
— Muons are more affected 5T
— Negative temp. effect (T)T
— Positive temp. effect

_ / " () - 5T (h) - dh
0
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Can be:

« Qutside the heliosphere ( Voyager )
« Above the atmosphere ( various satellites)

* High in the atmosphere ( high altitude
balloons)

 On ground ( secondary CR)
* Underground ( secondary muons, neutrinos...)
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14C anomalies /%

ha

/\m Little lce Age
A S

Various methods are used to detect
CR

Some indirect methods includes
measurement of concentration of
cosmogenic radioisothopes 1°Be
and *C in a sample

Neutron monitors are standard
detectors for ground measurements

Medieval Warm

™ /
Mleasurement of Cherenkov

ol 1
Vikings in Greenland U
! ! } | light with telescopes

Maundar Minimum \

1000 1200 1400 1600 1800
Yaars

1~

kleasurement of particles

A

=+—— First interaction (usually several 10 km high)

Air shower evolves (particles are created

= and most of them later stop or decay)

Measurement of
fluorescence light

Some of the particles (Fly’s Eye)

reach the ground

Measurement with scintillation counters y
/ J
| m—] | s— | — )

=~z Measurement of low-energy muons
with scintillation ortracking detectors

with tracking detectors

(with drift chambers or
streamer or Geiger tubes)

Measurement of high-energy
muons deep underground

1) 1999 K. Bernléhe



Ground systems

Modulation effects have been

studied extensively by the neutron ?
monitors sensitive up to several tens ?

of GeV, depending on their
geomagnetic location and

atmospheric depth. L1 . ¥
Muon detectors at ground level are - B xpey ?
sensitive to primary particles of L A
higher energies than NMs. TT Lt 8

mmmmmm

Underground muon detectors
correspond to even higher energy —
primaries. For this reason muon -
observations complement NM
observations in studies of long-term
CR variations, CR anisotropy and
gradients or rigidity spectrum of
Forbush decreases
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The Institute of Physics Belgrade (IPB) is the reference institution for research in
physics in Serbia. IPB currently employs 120 senior researchers and 80 PhD students
and post-doctoral researchers.

IPB researchers make up 1% of Serbia’s research sector, producing roughly 10% of the
country’s scientific output.

IPB'leads Serbian participation in international projects and collaborations. The majority
of the international collaborations are within the EuropeanL'Research Area (ERA) or with
key/international research centres such as CERN.
Particle and nuclear physics research at IPB is conducted through two research groups:
—. -High enhefgy physics gr‘by_p — ATLAS collaboration s d :
— "Nuclear |_o‘hysics groupi—f;"éosmic-ray muon measurements, MICE collaboration
IPB‘s Scientiﬂ% computing laboratory.is a part of the GRID international infrastructure.

IPB also has‘é well established cooperation with JINR in Dubna.
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Low-background laboratory for nuclear physics

« 78 ma.s.l., Geographic coordinates 44° 51’ N, 20° 23’ E
« Minimal vertical rigidity 5.3 GV.

« Consist of two parts:
— Ground level (GLL)
— Underground (UL) level, dug in 12m of loess .
* Scientific research activities in the LBLNP are in the fields of nuclear and high energy
physics. They are related in particular to cosmic-ray physics, nuclear spectroscopy,
radon and environmental radiation measurements

O TOP lab
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Low-background laboratory for nuclear physics

« For the last 25 years we participated in the 2T+ Ve — BPh + e
realization of LOREX ( lorandite experiment), the
only geochemical experiment to determine the Earcpean Indoor Raden Map, Merch 2017
average solar neutrino flux over the last 5 million PR e
years, via the neutrino capture by Thallium-205.

« Studying rare nuclear and particle processes

« Comprehensive studies of all components of
background in high sensitivity experiments

« Cosmic ray muon induced signatures in low-
energy detectors

« Continuous monitoring of cosmic ray muon
intensity ( from 2002)

« Radon and enviromental radiation studies
* Neutron induced nuclear reaction

« Backgroundless search for element Z-113 (eka-
thallium) in nature: (conc<e-11g/g at 90%CL)

« Plasma focus-fusion machine

 etc...

Radon gas from

Buildings and Nuclear power | | Other sources
the ground

the ground and weapons
test
nl

Artificial
sources

Food and drink ﬁc rays Medical
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Low-background laboratory for nuclear physics

 MICE experiment. EU, EUCARD2 (2014-
2017).

« Bilateral project with Belorussia

« |AEA RER9136: Reducing Public Exposure to
Radon by Supporting the Implementation and
Further Development of National Strategies

* Belgium. CHANDA (solving CHAllenges in
Nuclear Data) project. FP7-EURATOM-
FISSION program.

« EUFRAT (European Facilities for Nuclear
Reaction and Decay Data Measurements)
program. JRC-European Commission:

1.Prompt-fission gamma
ray characteristics from the reactions
235U(n,f) in the resolved neutron-resonance
region

2. Set up and commissioning of a
CeBr3 array as part of the GLADIS hybrid
gamma-ray spectrometer.
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Low-background laboratory for nuclear physics

« CMS experiment at CERN, 2003-2010
« NAG61/SHINE experiment at CERN, 2011-2015

« MICE experiment at RAL, since 2015

software development, MC simulations (Geant4)

data processing and calibration, data transfers in grid environment

analyses (also utilizing the artificial neural network approach or multivariate
analysis)

operations: NA61 ToF detectors M&O, CMS Ecal Safety System M&O

Cosmic Ray Workshop,Atlanta 2019
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Low-background laboratory for nuclear physics

« The experimental setup consists of two identical sets of ) A 4
detectors and read out electronics, one situated in the GLL
and the other in the UL. Each setup utilizes a plastic
scintillation detector with dimensions 100cm x 100cm x
5cm equipped with 4 PMTs optically attached to beveled

corners of a detector. J(/ A C
«  Preamplifier output of two diagonally opposing PMTs are B
summed and fed to a digitizer input (CAEN FADC, type : ) lj
N1728B). FADC operates at 100MHz frequency with 14 bit
resolution.

« They are capable of operating in the list mode, when every
analyzed event is fully recorded by the time of its
occurrence and its amplitude. This enables correlation of
the events, both prompt and arbitrarily delayed, at all four
inputs with the time resolution of 10 ns. Single and | = ———
coincident data can be organized into time series within | = .. == DD Ee SR S
any integrationn period from 10 ns up. The two N1728B | - = == 75 7 L
units are synchronized, enabling coincidence/correlation of Sl e N
the events recorded in both of them. The flexible soft ware
encompassing all above said off-line analyses is user-
friendly and entirely homemade.
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The events generating enough
scintillation light to produce
simultaneous signals in both
inputs, exceeding the given
threshold, are identified as
muon events.

To account for the contribution
from other particles to the
experimental spectrum, not all
the events in the spectrum are
counted when muon time
series are constructed.

Muon events are defined by
setting the threshold
corresponding to muon fraction
of recorded spectrum.
Threshold is set in terms of
"constant fraction” of the
spectrum maximum, which also
reduces count rate fluctuations
due to inevitable shifts of the
spectrum during long-term
measurements.

3 =] . .
8 & B8 8
= = = =]

2
(=3

Counts diagonals summed

Ground

10004 level ]
}ﬂg Underground

T T v T T 1
0 500 1000 1500 2000
Channals

Figure 9. The sum spectra of two diagonals of the large
plastic detectors in the UL and GLL. For comparison,
the spectra are normalized for the peaks to coincide.
Channel 650 now corresponds to the muon energy loss of
10 MeV. The integral of this peaked distribution is taken
as the first approximation to the CR muon count by the
large detectors
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Low-background laboratory for nuclear physics
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Figure 11. The portion of the background of the HPGe
spectrum coincident with the large plastic detector with
delays in the range of 1 to 5y, after 187 days of measure-
ment time. It shows the annihilation line which is due to
the decays of positive muons stopped in the lead castle,
and the triangular structure at 692 keV, which is due to
inelastic scattering of fast neutrons on 72-Ge, the neu-
trons originating mostly from direct fast muon interac-
tions with nuclei and certainly less from captures of
stopped negative muons. The threshold in this spectrum
is sufficiently high to leave this last structure unscathed
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Low-background laboratory for nuclear physics

» For the simulation of cosmic radiation the CORSIKA
software package developed for the experiment KASCADE
was used.

+ Geant4 software package has been developed for particle
physics and simulates the interaction of particles with
matter.It is a very good tool to simulate the response of
detectors used in the experiment.

« Cosmic rays can be simulated from primary cosmic
radiation that is entering in the atmosphere and follow the
creation of the cascade through the atmosphere, and
finally detects using plastic scintillators at the Earth's \‘\
surface or in the underground laboratory. ‘

«'4

h
0

T T T 1
0 5 10 15 20
P [GeVic]
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Low-background laboratory for nuclear physics

» Response of the detectors are
calculated from simulation

* Range of energy for the primary

o CR found
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Low-background laboratory for nuclear physics

« Asymmetric muon telescope separates muons with
respect to zenith angle. Asymmetric muon telescope
IS an inexpensive detector, constructed from the
components already available in the laboratory.

* It consists of two plastic scintillators of unequal
dimensions. Detectors are separated by 78 cm, to
have roughly the same count rate in the coincident
and anticoincident mode. Lower detector in single
mode operates in the same manner as the one in the
GLL, with wide angular acceptance. The coincident
mode constitute the events registered in both upper
and lower detector, while the anticoincident mode is
made from the muons passing through the upper but
not the lower detector and therefore favors inclined
muon paths.
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Low-background laboratory for nuclear physics

« Different angular distribution means different path 1.0
length of muons registered in three modes of ain)
ASYMUT and also different energy distribution of
parental primary particles

» Other experimental arrangement is also discussed
—Planar configuration

frequency

024
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/ T » T » T v T b T a T . T b T b T b T ¥ 1
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/ Energy (GeV)

Cumulative response function to galactic cosmic rays of different muon detectors
o1 in the lab. 0.5 level corresponds to median energy.
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Solar activity

— The amplitude of a Forbush
decrease is one of its main
characteristics.
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Solar activity

Ground measurements

Dependence of FD amplitude on median
rigidity (or energy) is expected to follow

the power law:

AN
N R

¥ should be ~(0,4-1,3)
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L
NOAA AR 11429 at 00:02 UT on 2012
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Solar activity
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Solar activity

Found dependence of FD amplitude
on median rigidity o illustrates
applicability of our setup for studies
of consequences of CR solar
modulation process in the energy
region exceeding sensitivity of
neutron monitors.

Amplitude of Forbush decrease is
inverse proportional to component
of the diffusion tensor parallel to
magnetic field which depends on CR
rigidity

Higher power indices can be due to
more complex variation of GCR.
This more complex variation is a
result of series of CMEs during this
event that leads to large compound
ICME structure with multiple shocks
and transient flow

Amp. (%)

Amp. (%)

= stations
linear fit NM
linear fit NM+Belgrade
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0,82+0,08 0,78+0,03
0,79+0,16 0,67+0,06
0,57+0,05 0,58+0,02
1,27+0,16 0,86+0,07
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Comparison with satellite data

« STEREO (Solar Terrestrial
Relations Observatory)

— Two nearly identical spacecraft were
launched in 2006 into orbits around
the Sun

— Communication with STEREO B
stopped 2014.
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Comparison of ground and satellite data
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Correlation matrix of linear correlation coefficient (in % ) for
Belgrade cosmic ray station with its temperature and pressure
corrected underground and ground level detectors (UL _tpc,
GL_tpc), only pressure corrected ( UL_pc, GLL_pc ),raw data (
UL raw, GLL raw) and Rome, Oulu, Jungfraujoch (JUNG)
and Athens NMs for March 2012.
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Muons and temperature of the atmosphere

Muon generation level Muon generation level

e Common empirical models use oo | o o
temperature of the muon m; / \
creation  level in  the \
atmosphere for temperature
corrections but muons are \
created throughout the / \

5000F

atmosphere L F e
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Muons and temperature of the atmosphere

relative variance

e Also this procedure is reducing dimensionality ]
of the problem by choosing only statistically \
meaningful. 1]

e Method is more efficient then others but our g”“\
alternative method which use machine i3
learning is even more efficient. . \\...“ .
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Muons and temperature of the atmosphere

The effect of atmospheric parameters in
secondary cosmic ray muon component is
well known. There are several theoretical
and empirical models that describe these
effects well. Usually this knowledge is used
to correct for secondary cosmic ray
variations due to atmospheric effects.
Alternatively, once model parameters are
established, sensitivity of cosmic ray muon
detectors to variations od atmospheric
origin can be used to estimate
temperatures for different layers of the
atmosphere.

We demonstrate this procedure using
cosmic ray data measured in our lab,
combined with parameters of our
empirical model for meteorological effects
based on principal component analysis.

AT [K]
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Muons and temperature of the atmosphere
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Time series of measured (red) and estimated temperature (green and dark green) for isobaric
levels 30, 150, 350 i 975 mbar. Preliminary data!
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Cloudiness and cosmic rays

The physical mechanism proposed to explain CR
contribution to cloud formation is named ion-
induced nucleation

Diurnal temperature range (DTR) is the difference
between daily temperature maximum and
minimum DTR = Tmax — Tmin .It is a useful
guantity since it is anticorrelated with cloudiness is
used as a proxy for cloudiness.

An index of DTR deviations is defined combining
temperature data from multitude of north
hemisphere meteorological stations. This is the
excursion od DTR from the expected value, and
this difference, normalized to standard deviation.

DTR deviation index time series are studied,
searching for variations correlated with CR
variations, with the aim of testing the hypothesis of
CR influence on cloud cover

Superposed epoch analysis on the set of Forbush
decreases above certain amplitude cut has been
performed.

When the cut is raised to 7%, the DTR deviations
start to differ significantly from zero in the days
following FD.
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Fig. 3. Superposed epoch analysis of DTR deviation before and
during Forbush decrease with amplitude higher than 7% (35 FD
events). Zero epoch is the day of the FD start. The error bars repre-
sent the standard error of the mean.
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around the appearance of the GLE effects, for different GLE amplitudes.
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Cloudiness and cosmic rays
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Arduino detector

* Based on MIT project for hendheld
muon detector-Cosmic watch

e With collaboration with one
highschool ( for gifted children)

* Telescope arrangement of two plastic
scintilators with MPPS/SiPM
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Need improvement!

Cosmic Ray Workshop,Atlanta 2019 42



Plans for future

* Exploring correlation of the CR with enviromental parameters
measured at the site ( atmosphenc parameters,,5oﬂ composﬂ’ 0| |
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Conclusion

Muon detectors at Low level laboratory are used to find rigidity dependence of Forbush
decrease. These data for transient solar modulation of GCR are obtained over much
higher range of rigidities than region sensitive to NM thus allowing more extensive
studies of cosmic-ray solar modulation processes.

Comparison of ground data with satellite data outside geomagnetic field shows different
correlation depending on energy recorded particles thus allowing better understanding
of correlation between Forbush decreases and CME that can lead to hazardous event
on Earth.

» Dependence of FD amplitude on
median rigidity can lead to better
models of propagation of CR through
heliosphere thus giving condition of the
heliosphere. . :

« Small detectors can be used to monitor A Sl phe
not just solar weather but also some
CR induced effects in enviroment
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Thank you for your
attention!

YOU'VE TURNED INTOY V NOW I KNOW WHY
MONSTERS... BOTH OF I'VE BEEN FEELING
you /! IT'S THOSE so WARM/ LOOK AT
RAYS! THOSE TERRIBLE ME Y/ THEY'VE /
COSMIC RAYS./ AFFECTED ME, TOO!
WHEN I GET
EXCITED I CAN
FEEL AAY BODY
BEGIN TO BLAZE/

http://cosmic.ipb.ac.rs/
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Low-background laboratory for nuclear physics
Capacity (W) [45

Plasma focus device

The plasma focus experiment in Belgrade, Serbia
started in the late eighties of the last century.
Belgrade plasma focus device (BPFD) is a fusion
machine intended to operate as optimized neutron
source or hard X-ray source and can be used for
neutron activation or production of short-living
radioisotopes. These radioisotopes will have very
low activity which can be analyzed in the
underground Low-Background Laboratory for
Nuclear Physics. Also, we compared the obtained
experimental data (neutron vyield, total current
waveform, working gas pressure) with the numerical
simulation code (The Lee model code) to test our
plasma focus machine. Comparison between
neutron vyield from our experimental data and
neutron scaling laws and neutron yields derived from
computation using the Lee Model code shows good
matching, but for better verification of the code, more
experimental data are needed.
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Voltage (kV)
Inductivity (nH)
Peak current (kA)

Energy input (kJ)
Anode diameter (cm )
Pressure (mbar)

Averaged neutron yield
(neutron3/pulse)

Distance between outer
and inner electrode (cm)

Length of the inner
electrode (cm)

15
62
300

0.95

3.5

2x 107

19
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EKcnepumeHTasiHe NOCTaBKe

First one was to extend the sensitivity to 94 higher energies
with detection of multi-muon events underground. An array
of horizontally oriented muon detectors ought to be placed in
the UL. Simultaneous triggering of more than one detector is
an indication of a multi-muon event.

The idea was exploited in the EMMA underground array
located at the deeper underground laboratory in Pyhasalmi
mine, Finland, with the intention to reach energies in the so
called knee region.

For a shallow underground laboratory, exceeding the energy
region of solar modulation would open the possibility to
study CR flux variations originating outside of the
heliosphere.

Ha ocHoBy cumynauuje 6poj MynTMMUOHCKUX aorahaja je
cyBuwe mManu ga 6u ce camo y3 nomoh cagallwe onpeme
Morne npaTtuTy NnpoMeHe dornykca ycnen conapHux
MoAynauuja Koja je pega HeKornuko npoueHarta gHeBHo. [la
6w ce getekToBane npomeHe dnykca pega 1% ca 3o
nasecHowwhy (3VN/N), noTpe6Ho je npowmpnTy
AeTeKTopCcKn cuctem ga 6u gobunm notpedbaH UHTEH3UTET
donykca. YKonuko ce cuctemM 3a getekunjy MMoHa npoLumpm
Ha ueny noBpLInHY noasemHor gena HuckodoHcke
nabopatopuje (cnuka 5.24). 3 cumynaumje ce gobuja
~2600 kovHUMaeHumja no gaHy, 4eTeKTOBaHUX Y No ABa
AeTekTopa (noBpLuMHe 1m2), Ha pa3nuunuTUmM Moryhum
pacTojakbnma Ha uenoj nosplumnHn. Oeaj 6poj omoryhasa, ca
noTpebHOM CTaTUCTUYKOM curypHoLuhy, nocMmatpame
Bapuvjaunja Behux og 5,8% Koje noTnyy of conapHe
moaynaumje. OBakse Bapujaumje drnykca ce peTko jaBrbajy (
HMNp. Beoma Benuko PopbyLloBo cMakeH-€) Na je oBa
nocTtaBka Heogrosapajyha 3a KOHTUHyariHO nocMmartpame
dnykca Ha pasnuunTnum eHeprujama npuMapHOr KOCMUYKOT
3pavera

BaxHo je un ga ce ysumajy y 063up camo KoOMHUMAeHUnje
HacTane og MMOHa a He N O eNeKTPpOMarHeTHe
KOMMNOHeHTe. EnekTpoMarHeTHa KoMrnoHeHTa ( & eNneKkTpoHU,
(POTOHM M CNIMYHO) HACTaje y MHTepaKumju MMOHa ca
3emrbuiTem n3Hag getekropa. OBakas ,MUHK NSbycak” je
rnoKanu3oBaH OKO MWOHA, a Te YecTuue ce Mory
AEeTEeKTOBaTU y AETEKTOPY M NOrpeLlHo MAEHTMAUKOBATU Kao




Detektorski sistemi

 Odbroj detektora se moze prikazati sa:

Na= %[, Yi(E,R)Ji(E,O)dE = [;° W; (E,h,t)dE
* Funkcija J;(E,t) je spektar energija primarnog kosmic¢kog zra¢enja
 Y;(E, h) jefunkcija prinosa za datu energiju i visinu.

Vi(E,R) = [, [Si(8,¢) ®i,(Ei,hE,0,$p)dEAQ

S; (8, ¢) efektivna povrSina detektora
@, ,(E;, h,E, 0, ¢) je diferencijalni fluks miona po primarnoj Cesticii tipa sa
energijom E;.

W; (E, h,t) je diferencijalna funkcija odziva

» Metod parametrizacije, teorijski metod ili uz pomoc¢ simulacije se odreduje
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https://soho.nascom.nasa.gov/classroom/nordlys_english.mov

Cumynaumonun naketn CORSIKA n GEANT4
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Detektorski sistemi

* Poredenje sa bliskim Neutronskim
detektorima

e Utvrden je stepen linearne
korelacije
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