Portable Cosmic Ray Telescope **Design and Construction** James Shirk **GSU** Inagural Cosmic Ray Workshop October 4, 2019

Outline

- Group introduction
- Hardware
 - Development and construction
 - Telescope operation
- Analysis
 - Online monitoring
 - Early data analysis
- Geant4 simulation
- Summary and outlook

GSU NPG Interests in Cosmic Rays

• Detector development

- Deploy cosmic ray monitors worldwide
- Hardware, Software, and Simulation

Applications of measurements

- Monitor atmospheric properties: temperature, pressure, etc.
- Monitor space weather: solar wind, geomagnetic fluctuations, etc.
- Using the telescopes for STEM outreach

Construction and Development

Early Design

- Vacuum photomultiplier tubes (PMTs) were used to read scintillation light (2000\$ +)
- Very large and bulky
- Difficult to maintain over long periods of time
- Dangerous
 - 2 kV PMT bias voltage

Telescope Advantages

• Portable

- It is light and small relative to other detectors.
- Low-cost
 - Each fully assembled detector costs ~600
 USD
 - Continuing to decrease the price
 - Cheaper electronics
- Standardized
 - Every detector will have the same hardware and same software

Telescope

Telescope Advantages cont.

- Not complicated
 - Few parts with potential to break or wear down with age
 - General concept is easy to grasp so can be used for STEM outreach in high/middle schools
 - Maintenance should be low-cost
- Expandable
 - We can continue to expand the telescopes with more tiles, etc. if we want
- Networked
 - Accessible worldwide

Telescope anatomy

Telescope with Neutron Cell Anatomy

Frames

- Extruded aluminum with stainless steel hardware
- 22 x 22 x 40 cm
- Light and low cost
 - Still durable and robust
- Due to the brackets used, it is very easy to quickly adjust the separation of the scintillator tiles in our design

Frames Cont.

- Expandable for more panels and sensors
- 22 have been constructed
- Part of our STEM outreach efforts, had a high school student assist with building the frames

Scintillator Panels

- Detect charged particles (mainly muons) by releasing scintillation light
- This scintillation light is caught by a wavelength shifting fiber which routes the light to to a SiPM
- Developed based on group work with sPHENIX and the scintillator tiles they are using for the outer HCal

Scintillator Panel Construction

Not yet cut scintillator panels

After cutting and grooving

October 4, 2019

Scintillator Panel Construction cont.

Gluing the wavelength shifting fiber in place

After wrapping the tiles and mounting the SiPM board

October 4, 2019

James Shirk - 2019 Cosmic Ray Workshop

Readout Electronics

• Custom designed 4 channel board was built to interface with the SiPM board and send data to a Raspberry Pi

James Shirk - 2019 Cosmic Ray Workshop

Silicon Photomultiplier (SiPM) boards

- SiPMs collect the scintillation light after it's routed through the wavelength shifting fiber
 - Low cost (\$15 compared to \$2k for PMT)
 - High noise
- Use 2mmx2mm SiPMs with
 55V bias voltage
- On-board OP-AMP amplifies signal before sending it to 4 channel board

4 Channel Boards

- Connects to the SiPM boards
- Interfaces onto a Raspberry Pi
 - Small, low-cost computer with network capabilities
 - Standard Debian based Linux
- 4 boards on it provide SiPM bias voltage
 - Can set voltages from 52.5 to 57.5 V with high precision. Encapsulates the operating voltage of our SiPMs
- Raspberry Pi provides readout and logging

Particle Detection - Bringing it all together

- Panels release scintillation light on incidence with charged particles which is caught in the wavelength shifting fiber
- Scintillation light is collected by the SiPM, amplified, sent to the 4 channel board, and counted on the Raspberry Pi

Data Recording

- The 4 Channel board sends both raw counts from each individual SiPM and 'coincidence' counts
- Coincidence counts, where two tiles trigger at the same time, are determined by our 4 channel board and sent to the Raspberry Pi
- Currently monitor coincidence for 3 channels

Channel 1

Channel 2

Channel 3

Operational Telescope

Neutron detection

- EJ-200 scintillator panels are only sensitive to charged particles
- An upgrade will be fitted to some of the telescopes with the capability to detect neutrons

Neutron production in cosmic ray decay chain Picture Source: https://arxiv.org/abs/1311.5531 October 4, 2019 James Shirk - 2019 Cosmic Ray Workshop

Neutron Cell

- Cell filled with liquid scintillator
 - Sensitive to both charged and uncharged particles
- Use the same readout electronics as the scintillator panels
- Can isolate neutron events by determining if the particle triggered the scintillator panels too

Telescope Operation

Setting and reading the bias voltage

history	oltageDump.sl scopeAlpha:", Channel 0 	/deu-tools \$	sudo ./voltag Channel 2 l	eDump.sh Channel 3 (Channel 4	Channel 5	Channel 6	Channel 7 (
nic@nuonTel nic@nuonTel nic@nuonTel nic@nuonTel nic@nuonTel nic@nuonTel dol passwor snic@nuonTe snic@nuonTe snic@nuonTe	escopeAlpha: escopeAlpha: escopeAlpha: escopeAlpha: escopeAlpha: lescopeAlpha: d for cosmic lescopeAlpha: lescopeAlpha: lescopeAlpha	/deu-tools \$ /deu-tools \$ /deu-tools \$ /deu-tools \$ /deu-tools \$ /deu-tools \$ /deu-tools \$ /deu-tools \$ /deu-tools \$	54.000000 57.239000 11.174347 sudo ./setTar sudo ./setTar sudo ./setTar sudo ./setTar sudo ./setTar sudo ./setTar	58.453852 19.613160 get.sh 3 0 get.sh 1 0 get.sh 2 0 get.sh 3 0 eDump.sh	0.000000 0.000000 0.000000	0.000000	0.000000 1	
larget (V) Joltage (V) Temp (C) DSM ic@muonTe OI OFMASIC	1 4.474248	1 54.837512 1 11.174347	57.239580 11.174347	4.454115	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	0.000000 I 0.000000 I 0.000000 I

Setting and reading back the bias voltages

Boards that set bias voltage on the 4-channel board

Testing the SiPMs and boards

- Put the SiPM in a light-tight box and set the bias voltage to approximately 55V
- With the bias voltage set we expect to see noise counts
 - If we see no counts, we can safely assume it does not work
- If bias voltage is set and the SiPM is connected to a board, there are a range of values we can expect to see to determine operation of the tiles

SiPM testing apparatus

Data collection

File Edit Tabs Help

2019-10-03T11:51:02.735Z,0,0,0,129,70,140,0,1338,2026,1732 2019-10-03T11:52:02.735Z,0,0,0,124,71,139,0,1307,2024,1710 2019-10-03T11:53:02.736Z,0,0,0,139,63,137,0,1344,2057,1756, 2019-10-03T11:54:02.737Z,0,0,0,155,66,124,0,1324,2017,1711, 2019-10-03T11:55:02.738Z,0,0,0,135,68,141,0,1325,2016,1738, 2019-10-03T11:56:02.739Z,0,0,0,133,66,145,0,1393,2052,1730, 2019-10-03T11:57:02.740Z,0,0,0,109,44,123,0,1317,2036,1706, 2019-10-03T11:58:02.741Z,0,0,0,133,64,147,0,1362,2099,1790, 2019-10-03T11:59:02.742Z,0,0,0,118,59,132,0,1277,2132,1724, 2019-10-03T12:00:02.743Z,0,0,0,139,73,151,0,1286,2078,1692, 2019-10-03T12:01:02.744Z,0,0,0,142,66,141,0,1261,2035,1827, 2019-10-03T12:02:02.744Z,0,0,0,128,73,150,0,1294,2019,1768, 2019-10-03T12:03:02.745Z,0,0,0,115,57,133,0,1348,2038,1724 2019-10-03T12:04:02.747Z,0,0,0,128,74,148,0,1343,2089,1789 2019-10-03T12:05:02.747Z,0,0,0,121,69,127,0,1363,2070,1703, 2019-10-03T12:06:02.749Z,0,0,0,116,59,137,0,1354,2158,1770 2019-10-03T12:07:02.750Z,0,0,0,123,61,143,0,1310,2046,1749 2019-10-03T12:08:02.751Z,0,0,0,144,74,161,0,1291,2112,1790 2019-10-03T12:09:02.751Z,0,0,0,119,54,116,0,1277,2049,1747, 2019-10-03T12:10:02.753Z,0.0.0.143,77,148,0,1377, 2019-10-03T12-11-02.7547.0.0.0.160.82.179

Data Collection

- Log file is created containing the date, raw counts from each SiPM, and every combination of coincidences
 - 6 coincidence combinations for our 4-channel board, current designs uses 3 of the channels

Online Monitoring

Online monitoring

- Software was developed in house to create plots of all our long-running detectors
- Update all the data daily
- Our online monitoring setup has been running for nearly a year now

Static plot from phynp6.phy-astr.gsu.edu/~cosmic

Dynamic plots

Example of our online monitoring

Online monitoring advantages

- As our worldwide network of telescopes grows, the software is in place to begin monitoring them
- The status of all the telescopes can be monitored remotely at any given time
- All our data is widely available to anyone who wants to use it
- Lots of other worldwide monitors use a number of different detectors at each given location, all of our telescopes will be consistent

Data Analysis

Telescope Consistency Test

- Test was run with two independent telescope stations
- Single channel counts were matched between the two to set proper SiPM bias voltage for each tile
- Allows us to monitor the consistency of the telescopes, i.e., if two independent telescopes ran in identical conditions performed the same

Telescope Consistency cont.

Full Telescope Percent Deviation Comparison

October 4, 2019

James Shirk - 2019 Cosmic Ray Workshop

Weather Correlations

October 4, 2019

33

Pressure Correlations

Temperature Correlations

2D histogram of the counts percent deviation versus the temperature percent deviation

Geant4 Simulation

3D model

October 4, 2019

James Shirk - 2019 Cosmic Ray Workshop

3D Model of Telescope

Development

- Imported the CAD model into Geant4
- Began development with a point source of same energy particles
- Does not model actual cosmic ray events, cosmic particles do not come straight down

Geant4 Simulation

Telescope simulation: 1k cosmic muons

- Particles come from a plane with randomized energy (in the range expected of typical cosmic particles)
- Angle of incidence is randomized to ± 70° in the x and z direction, and position is randomized to ± 15 cm in the x and z direction
- More accurately models real cosmic ray shower events.
- Allows us to model our telescope in simulation; we can use this to test the telescope
- Allows testing of efficiency and acceptance

Different Simulation Models

October 4, 2019

James Shirk - 2019 Cosmic Ray Workshop

Neutrons vs. Muons

Simulation with 1000 cosmic muons

Simulation with 1000 cosmic neutrons

October 4, 2019

Summary and Outlook

- Have developed low-cost, portable cosmic muon and neutron detectors.
- We are currently testing and building 30 total telescopes to be distributed worldwide.
 - Will allow us to monitor atmospheric and astrological effects going forward
- Using online monitoring, we can check the status of our detectors remotely and gather their data to analyze
- We are continuing to develop a simulation to study the telescope acceptance and performance.