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D2(k) =
k3P(k)

2p2 ; P(~k) = hd2(~k)i

Why do we need higher accuracy in our predictions?

5 cosmological parameters, w = -1

Region of Interest

• Example in this talk: matter 
power spectrum 

• Question: how badly will our 
constraints on dark energy be 
biased if we do not reach the 
same accuracy in our modeling 
as we might have in our data?

• Generate mock data set with the 
expected 1% error

• Analyze data with current 
method using HaloFit to model 
the matter power spectrum

‣ HaloFit (Smith et al. 2003): semi-
analytic fit for the power 
spectrum, based on modeling 
approach and tuned to 
simulations, accurate at the 5-10% 
level 

Δ
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Warm up

• Generate mock data 
from Halofit

• Analyze data with 
Halofit

• Results look pretty good!

input values

Dark matter

Baryons

Slope of 
primordial 
P(k)

Normali-
zation

0.022 0.023
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Analysis of the “True data” 

• Generate mock data from 
high-resolution simulation

• Use Halofit for analysis; 
remember, halofit ~5-10% 
inaccurate on scales of 
interest

• Parameters are up to 20% 
wrong!

• Only solution: precision 
simulations

• Analysis takes at least 10,000 
input power spectra for 
MCMC, each simulation takes 
~20,000 CPU hours

• With a 2000 node cluster 
running 24/7, our analysis 
will take ~30 years, hmmm...

input values
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Dark Energy 
EOS, w=p/ρ

Dark matter

Baryons

Slope of 
primordial 
P(k)

Normali-
zation

0.022 0.023



Cosmic Calibration: Solving the Inverse Problem

• Challenge: To extract cosmological constraints from observations in 
nonlinear regime, need to run Marko Chain Monte Carlo code; input: 
10,000 - 100,000 different models

• Current strategy: Fitting functions for e.g. P(k), accurate at 10% 
level, as we saw this is not good enough!

• Our alternative: Emulators, fast prediction schemes built from a 
manageable set of simulations

• Example here: Power spectrum emulator 
• Step 1: Show simulations have required accuracy (Heitmann et al. 2005, 2008, 2010)

• Step 2: Determine minimum number of simulations needed and develop sophisticated 
interpolation scheme that provides the power spectrum for any cosmology within a 
given parameter space prior (Heitmann et al. 2006, 2009; Habib et al. 2007)

• Step 3: Carry out simulation and build final emulator (Lawrence et al. 2010, Heitmann 
et al. 2013)
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Cosmic Calibration Framework

Run suite of simulations 
(40,100,...) with chosen 

parameter values

Design optimal simulation 
campaign over (~20) 

parameter range

Statistics Package 
(Gaussian Process 
Modeling, MCMC) 

Response 
surface; 
emulator 

Calibration
Distribution 

Observation 
input 

Predictive 
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Model 
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• Step 1: Design simulation 
campaign, rule of thumb: O(10) 
models for each parameter

• Step 2: Carry out simulation 
campaign and extract quantity of 
interest, in our case, power 
spectrum

• Step 3: Choose suitable 
interpolation scheme to 
interpolate between models, 
here Gaussian Processes

• Step 4: Build emulator

• Step 5: Use emulator to analyze 
data, determine model 
inadequacy, refine simulation 
and modeling strategy...
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The Original Coyote Universe

• 37 model runs + ΛCDM 

‣ 16 low resolution realizations (green)

‣ 4 medium resolution realizations (red)

‣ 1 high resolution realization (blue)

‣ 11 outputs per run between z = 0 - 3

• Restricted priors to minimize 
necessary number of runs

• 1.3 Gpc boxes, mp ~10¹¹M

• ~1000 simulations, 60TB 
°.

Background Visualization with ParaView by J. Woodring

Priors:
0.020 ≤ ω  ≤ 0.025
0.11 ≤ ω   ≤ 0.15 
0.85 ≤  n   ≤ 1.05
-1.3 ≤  w  ≤ -0.7
0.6 ≤  σ  ≤ 0.98
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• “Simulation design”: For a given set of 
parameters to be varied and a fixed 
number of runs, at what settings 
should the simulations be performed?

• Example: Five cosmological 
parameters, tens of high-resolution 
runs are affordable

• First idea: Grid 

‣ Space filling but poor projection 
properties 

• Second idea: Random sampling

‣ Good projection properties but poor 
space coverage

• Our approach: Orthogonal-array Latin 
hypercubes (OA-LH) design

‣ Stratified random sampling approach 

‣ Good projection properties AND space 
filling

The Simulation Design for wCDM Cosmologies

0.020 ≤ ω  ≤ 0.025
0.11 ≤ ω   ≤ 0.15 
0.85 ≤ n ≤ 1.05
-1.3 ≤ w ≤ -0.7
0.6 ≤σ  ≤ 0.9

b
m

Priors:

8

s

Priors are informed by current cosmological
constraints, the tighter the priors, the easier to 
build a prediction tool. Restriction in number of 

parameters also helps!

The Coyote Universe
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Next step: Smooth Power Spectrum

Baryon wiggles

D2(k) =
k3P(k)

2p2 ; P(~k) = hd2(~k)i

Gadget
PM, 2048³
PM, 1024³

• Each simulation represents one 
possible realization of the 
Universe in a finite volume

• Need smooth prediction for 
building the emulator for each 
model

• Major challenge: Make sure that 
baryon features are not washed 
out or enhanced due to 
realization scatter 

• Construct smooth power spectra 
using a process convolution 
model (Higdon 2002)

• Basic idea: calculate moving 
average using a kernel whose 
width is allowed to change to 
account for nonstationarity
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Next step: Smooth Power Spectrum

Baryon wiggles

D2(k) =
k3P(k)

2p2 ; P(~k) = hd2(~k)i

Gadget
PM, 2048³
PM, 1024³

Coyote III, Process convolution
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• After simulation design 
specification: Build non-
parametric interpolation 
scheme

• Gaussian Process (GP): fits in 
function space 

• GP involves matrix inversion 
in conditioning step (“curse 
of dimensionality”)

• Data compression: Express 
power spectra in terms of 
principal component (PC) 
basis (can use other basis too)

• GP over over PC coefficients

The Interpolation Scheme: Gaussian Processes + PCA



Cosmic Emulator in Action

• Instantaneous ‘oracle’ for nonlinear power spectrum, reduces compute time 
from weeks to negligible, accurate at 1% out to k~1/Mpc for wCDM cosmologies 

• Enables direct MCMC with results from full simulations

Heitmann et al. 2009, 2010
 Lawrence et al. 2010
Heitmann et al. 2013
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The Cosmic Emu(lator)

• Prediction tool for matter power 
spectrum has been constructed

• Accuracy within specified priors 
between z=0 and z=1 out to k=1 h/Mpc 
at the 1% level achieved

• Emulator has been publicly released, C 
code

• Extension: Include h as sixth 
parameter, out to k=10 h/Mpc and z=4

‣ Nested simulations to cover large k-
range

‣ Approach degrades accuracy to ~3%

Emulator performance:
Comparison of prediction 
and simulation output for
 a model not used to build 

emulator at 6 redshifts.

1%

1%
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The Next Step: The Mira Universe

• Extend parameter space to include varying 
w(z) and massive neutrinos

• Build “nested designs”: enable to build 
emulator from first set of 25 models, improve 
with additional 27 models, final precision 
with 99 models overall

• Various emulators for P(k), mass function, c-M 
relation, derived quantities...

• LCDM done, finalizing set-up based on this run
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1
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1.15

k

62 em
u / 

62 sim

25 models, emulator for 
linear P(k), 8 parameters

+/-1%
LCDM simulation

Parameters
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Summary and Outlook

• Precision cosmology needs high accuracy predictions! Can we 
avoid being theory limited?

• Cosmic Calibration Framework allows us to build fast prediction 
tools for ongoing and future surveys

• The Mira Universe will lead to an unprecedented set of 
simulations, spanning 8 cosmological parameters, including 
different dark energy models and neutrinos

• In this talk: Focus on power spectrum science but other 
emulators can be easily built, we have built in addition to matter 
power spectrum -- galaxy power spectrum, c-M relation (Kwan et 
al. 2012, Kwan et al. 2013) 


