Effects of Blending on Cosmic Shear in DES and LSST

David Kirkby

University of California, Irvine

$$
4 \text { Dec } 2013
$$

LSST DESC Meeting, Pittsburgh

- Current shape measurement algorithms assume that galaxies do not overlap.
- Stage-IV lensing surveys probe higher surface densities, but with more overlaps.
- Are we ready to take advantage of the full LSST depth? (LSST/DES signal ~ 28)
- Where should we focus our effort in further developing photo-z and shape measurement algorithms?

First Pass: analyze galaxies independently

LSST CatSim

Survey	Effective Area $\left(\mathrm{m}^{2}\right)$	Pixel Size(")		Exposure Time (s)	Sky Brightness $\left(\mathrm{mag}^{\left(\operatorname{arcsec}^{2}\right)}\right.$	Med. Seeing (FWHM)	Zero Point
CFHTLS	8.022	0.185	i	4300	20.3	0.64	10.0
			r	2000	20.8	0.71	13.5
DES	10.014	0.263	i	1000	20.1	0.79	12.5
			r	800	21.1	0.79	16.8
LSST	33.212	0.200	i	6900	20.0	0.67	41.5
			r	6900	21.3	0.70	55.8

GalSim \uparrow Simulated DES-r 800 s

includes
 sky noise

Second Pass: quantify effects of overlaps

- each galaxy's footprint = pixels where its detected signal > sqrt(full-depth sky)/2
- two galaxies are overlapping if their footprints have any pixels in common

Preview of results

- Predicted effective galaxy surface densities*:
$\left.\begin{array}{l}\text { - LSST: } N_{\text {eff }} \sim 23(r), 18 \text { (i) / sq.arcmin. } \\ \text { - DES: } N_{\text {eff }} \sim 8.0 \text { (r), } 5.5 \text { (i) / sq.arcmin. }\end{array}\right)$ x3
- LSST cosmic shear signal is concentrated at:
- $\mathrm{S} / \mathrm{N}>10$
- $\sigma_{\mathrm{gal}} / \sigma_{\mathrm{psf}} \sim 0.5-\mathrm{I} .5$
focus
- z-contamination ~ 1%
- $<z>\sim$ I. I (r) , I. 0 (i) and $\mathrm{i}<27.0, \mathrm{r}<26.5$
* $\sim 15 \%$ masking for stars not included

Maximum shape measurement error ratio k

Maximum shape measurement error ratio k
.5

LSST-i

Maximum shape measurement error ratio k

Shape measurement error ratio $\mathrm{k}=\sigma_{m} / \sigma_{i}$

Shape measurement error ratio $\mathrm{k}=\sigma_{m} / \sigma_{i}$

Shape measurement error ratio $\mathrm{k}=\sigma_{m} / \sigma_{i}$

Redshift contamination from overlaps

- Overlaps with $|\Delta z|<0.1$ are considered harmless (e.g., from satellites)
- Measure fraction of galaxy's weighted* flux due to overlapping galaxies with $|\Delta z|>0.1$
- Fraction measures redshift contamination:
- $>10 \%$ is unusable for photo-z
- $\mathrm{I}-\mathrm{I} 0 \%$ is "challenging"
* flux of secondary galaxy weighted with primary galaxy's profile.

LSST-r

redshift
 contamination:

I-I0\%
$>10 \%$

Comparison with other $\mathrm{N}_{\text {eff }}$ estimates for LSST

- LSST Science Book: Neff ~ 40 / sq.arcmin.
- Chang++ 2013: $\mathrm{N}_{\text {eff }} \sim 3 \mathrm{I} /$ sq.arcmin.
- $\sigma_{\mathrm{m}}<\sigma_{\mathrm{i}}(\mathrm{k}=\mathrm{I})$, simple geometric treatment of overlaps.
- This work: $\mathrm{N}_{\text {eff }} \sim 23$ (r), 18 (i).
- $\sigma_{m}<\sigma_{i}$, redshift contamination $<1 \%$

Next steps

- validate / improve input galaxy catalog
- model effects of stars on overlaps
- estimate systematic biases on shape measurement and photo-z due to overlaps
- focus limited CPU on best 20% of seeing?
- paper draft in progress...

Summary of results

- Predicted effective galaxy surface densities*:
$\left.\begin{array}{l}\text { - LSST: } N_{\text {eff }} \sim 23 \text { (r), } 18 \text { (i) / sq.arcmin. } \\ \text { - DES: } N_{\text {eff }} \sim 8.0 \text { (r), } 5.5 \text { (i) / sq.arcmin. }\end{array}\right)$ x3
- LSST cosmic shear signal is concentrated at:
- $\mathrm{S} / \mathrm{N}>10$
- $\left.\sigma_{\mathrm{gal}} / \sigma_{\mathrm{psf}} \sim 0.5-1.5\right\}$ effort here!
- z-contamination $\sim 1 \%$
- <z> ~ I.I(r), I. 0 (i) and $\mathrm{i}<27.0, \mathrm{r}<26.5$
* $\sim 15 \%$ masking for stars not included

