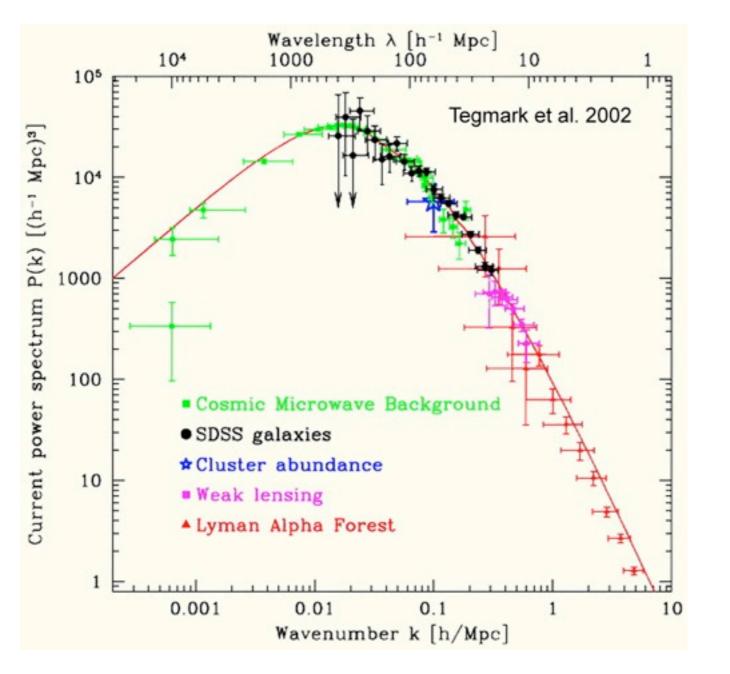
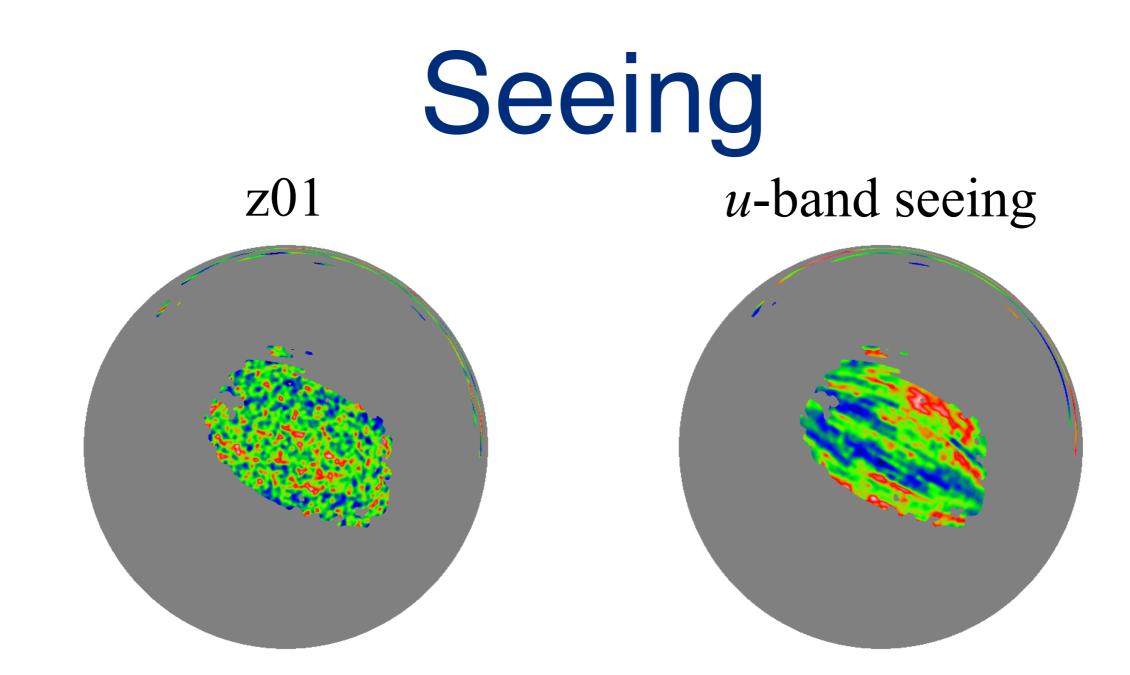
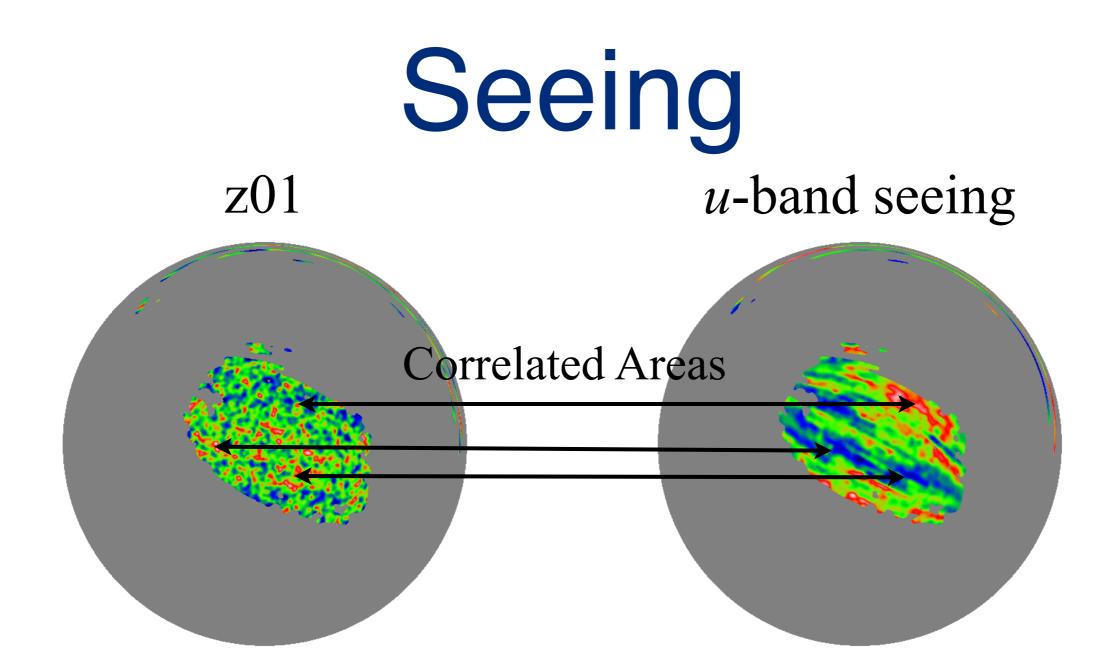
Mode-Projection Tests for LSST

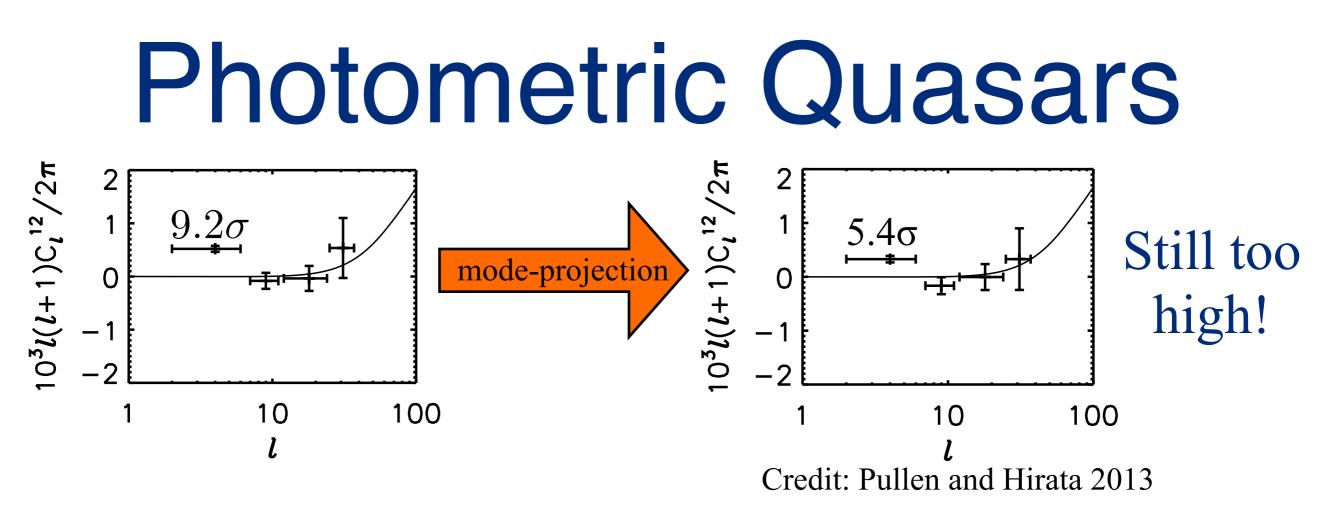

Anthony R. Pullen Caltech/JPL Postdoc Mentor: Olivier Doré

Collaborators: Shirley Ho (CMU) Chris Hirata (OSU)


Power Spectrum

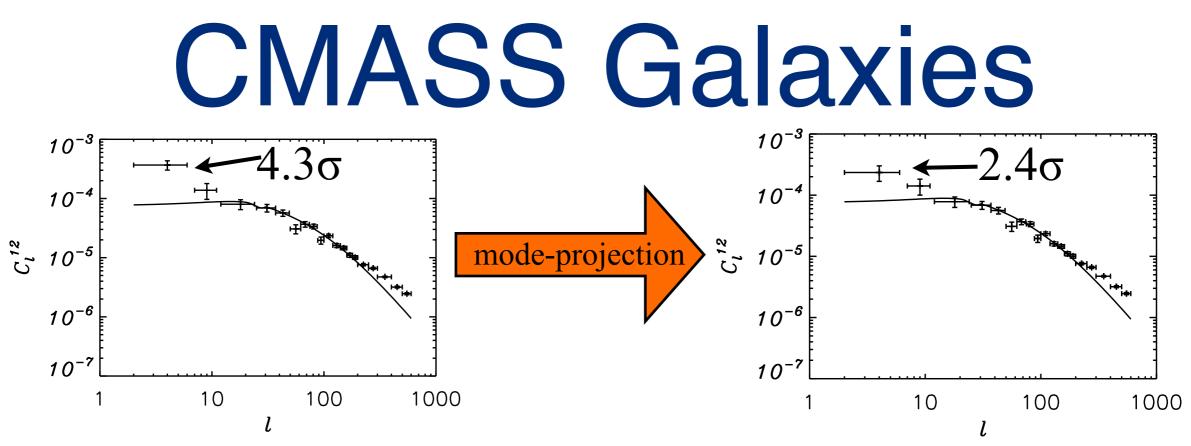

Credit: Ho et al. 2012

$$Credit: Ho et al. 2012$$


= radial projection of P(k)

- Seeing the FWHM of the point-spread function in a pixel.
- Affects photometric noise, de-blending of sources, and star-galaxy separation.

- Seeing the FWHM of the point-spread function in a pixel.
- Affects photometric noise, de-blending of sources, and star-galaxy separation.



- Excess cross-correlation contaminates f_{NL} and implies systematics.
- We perform *mode-projection* boosts the expected noise of contaminated modes to remove them from the estimator.
- Mode-projecting the seeing map reduces the cross-correlation by 4σ; stellar contamination was also a culprit.

Tegmark et al. 1997, Bond et al. 1998, Halverson et al. 2001

Going Forward

- SDSS DR6 quasar maps had 2% contamination; < 0.6% is needed for $f_{\rm NL}$ < 10.
- LSST's multiple viewings will beat down some systematic errors (e.g. seeing) on small scales, but not others (e.g. stellar contamination).
- More masking (Leistedt et al. 2013), cross-correlating between surveys (Giannantonio et al. 2013) seem to help.
- Ho & Agarwal (Ho et al. 2013) show that contaminated angular modes can be removed directly.
- I am currently testing these methods for the LSST survey.

- CMASS galaxies from BOSS survey exhibit stellar contamination on large scales.
- It appears that unknown contaminants may be present.
- Next steps: (1) Identify methods to remove unknown systematics after mode-projection and (2) determine LSST multiple scans response using Stripe 82 data.

Ho et al. 2012

How to remove systematics?

- We avoid fitting crosscorrelation amplitudes, which can cause spurious modes and oversubtraction.
- Instead we mode-project templates related to various systematics.
- Mode projection makes the estimator *exactly* insensitive to a given systematic template by effectively increasing the contaminated mode's noise.

$$\mathbf{x}^{\text{obs}} = \mathbf{x}^{\text{true}} + \sum_{i=sys} \lambda_i \Psi_i$$

$$\mathbf{C} = \mathbf{C}^{\text{true}} + \sum_{i=sys} \zeta_i \boldsymbol{\Psi}_i \boldsymbol{\Psi}_i^T$$

A number large enough so increasing it further does not affect the estimate.

Non-Gaussianity

- In LSS, non-Gaussianity causes $\Phi_{\text{NG}} = \phi_G + f_{\text{NL}}(\phi_G^2 \langle \phi_G^2 \rangle)$ the clustering bias to shift at large (*Planck*: $f_{\text{NL}} = 2.7 \pm 5.8$) scales.
- Quasars are the best tracers for this due to high redshifts and high bias.
- Systematics Test: Cross-correlate quasar maps from different redshifts.

Planck Collaboration 2013, Dalal et al. 2008, Slosar et al. 2008, Xia et al. 2011

 $\Delta b(k) \propto f_{\rm NL}/k^2$

Non-Gaussianity

• In LSS, non-Gaussianity causes $\Phi_{\text{NG}} = \phi_G + f_{\text{NL}}(\phi_G^2 - \langle \phi_G^2 \rangle)$ the clustering bias to shift at large (*Planck*: $f_{\text{NL}} = 2.7 \pm 5.8$) scales.

 $10^4 \ell C_{\ell}$

3

-1

-2

- Quasars are the best tracers for this due to high redshifts and high $f_{NL} = 100$ bias.
- Systematics Test: Cross-correlate quasar maps from different redshifts.

Planck Collaboration 2013, Dalal et al. 2008, Slosar et al. 2008, Xia et al. 2011

8 /11

250

200

QSO1

 $\Delta b(k) \propto f_{
m NL}/k^2$

 $f_{\rm NL} =$

l

100

50

Credit: Slosar et al. 2008

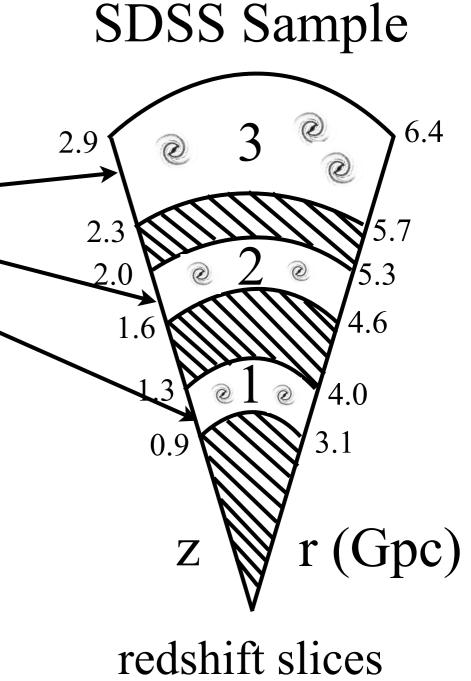
-100

150

Scale-dependent bias

- Nongaussian perturbations are seen in many models of primordial cosmology.
- It mixes large (halos) and small (< galaxy) scale clustering
- It makes scale-dependent bias.
- Big effect on large scales!
- Photometric quasars are best due to large, high-redshift samples.

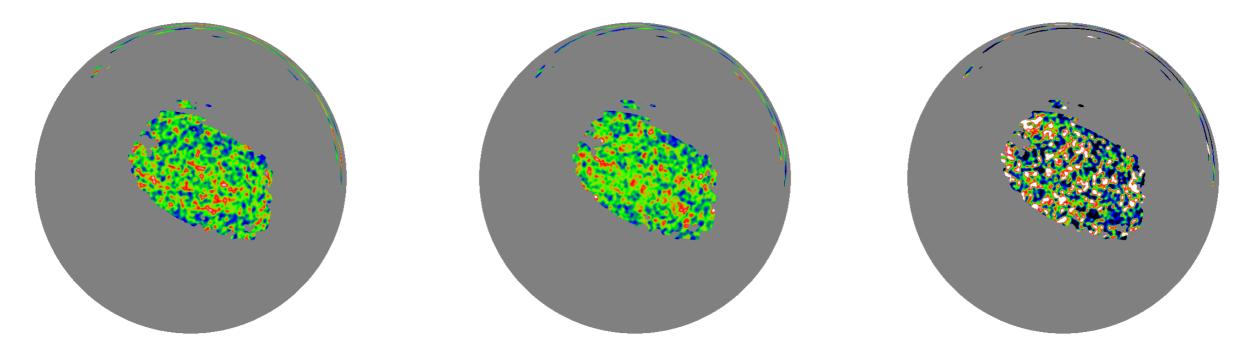
Decomposed Curvature Perturbation


$$\Phi = \phi + f_{\rm NL}(\phi^2 - \langle \phi^2 \rangle)$$

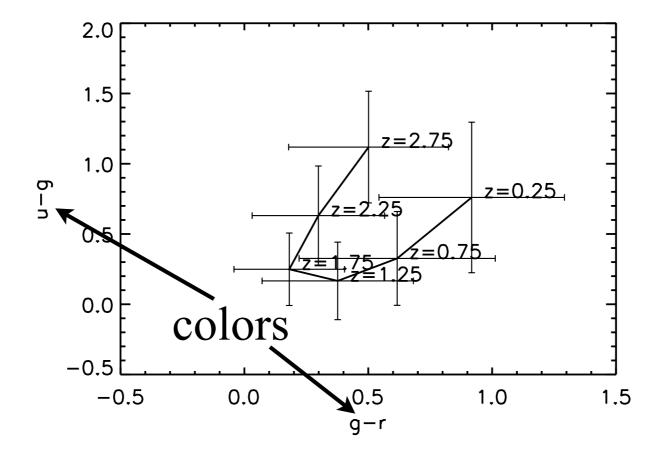
Gaussian

$$\Delta b(M,k) \propto \frac{f_{\rm NL}(b-p)}{k^2 T(k) D(z)}$$
$$p = \begin{cases} 1 & \text{galaxies} \\ 1.6 & \text{quasars} \end{cases}$$

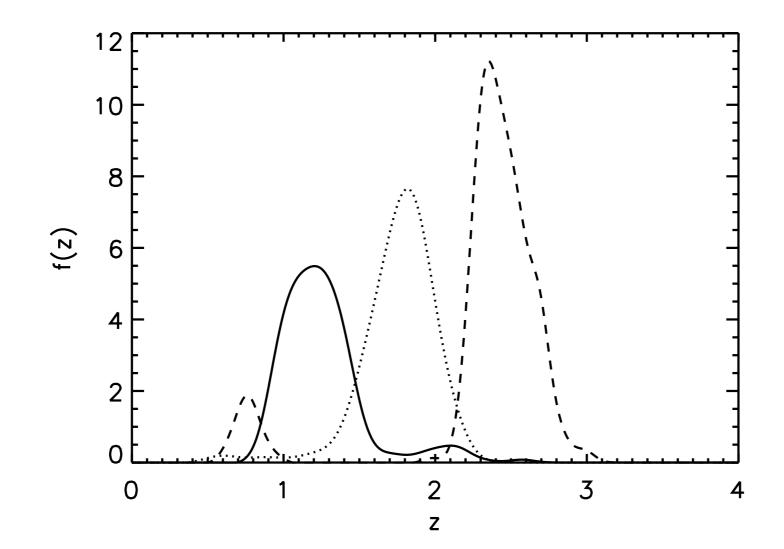
Quasar Clustering


- Quasars are the best tracers for this due to high redshifts and high bias.
- We choose 3 redshift slices within a larger SDSS *photometric* quasar sample (Richards et al. 2008).
- Systematics Test: Cross-correlate quasar maps from different redshifts.
- Quasar maps should be uncorrelated!
- Use a quadratic maximum likelihood (QML) estimator for C_{ℓ} .

Tegmark et al. 1996, Padmanabhan et al. 2003


Quasar Maps

$z \in [0.9, 1.3] \qquad z \in [1.6, 2.0] \qquad z \in [2.3, 2.9]$


Label	$z_{ m p}$	$z_{ m mean}$	N_{qso}
z01	0.9 - 1.3	1.230	$75,\!835$
z02	1.6 - 2.0	1.731	$91,\!356$
z03	2.3 - 2.9	2.210	$10,\!806$

Photometric Redshifts

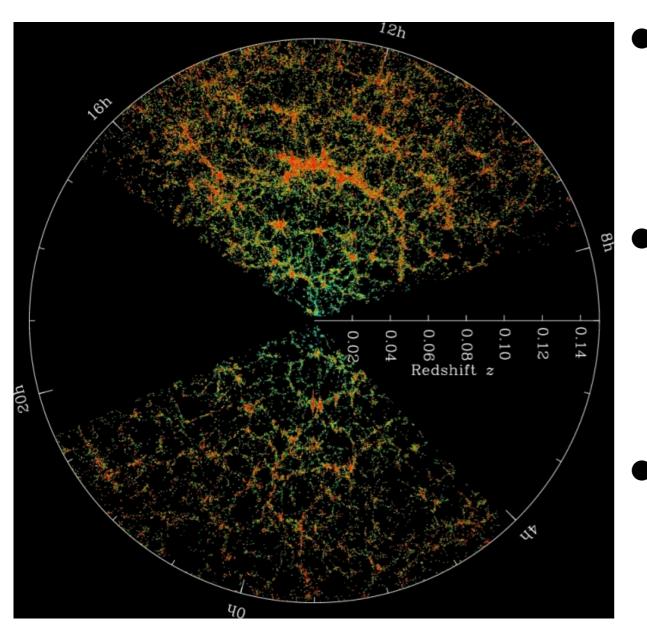
- Colors from apparent magnitudes vary with redshift, allowing redshifts to be estimated fast.
- Redshift errors are large (~ 0.1).

Redshift Distribution

Template Properties

Systematic (units)	$\overline{\Psi}$	σ_{Ψ}	ζ	z01 slope	z02 slope	z03 slope
ebv (mag)	0.0251	0.0109	10^{7}	+0.415±0.424	-0.249 ± 0.351	-5.84±2.98
star	$+2.96 \times 10^{-7}$	0.658	10 ⁶	+0.0149±0.0070	$+0.0121 \pm 0.0058$	+0.130±0.049
rstar	$+3.67 \times 10^{-6}$	1.38	10 ⁶	$(+2.60 \pm 3.35) \times 10^{-3}$	$(+7.29 \pm 2.77) imes 10^{-3}$	$(+3.89 \pm 23.58) imes 10^{-3}$
ugr (mag)	+0.0176	0.0354	10 ⁹	-0.0453 ± 0.1306	-0.276 ± 0.108	+0.438±0.919
gri (mag)	$+6.59 \times 10^{-3}$	0.0282	10 ⁹	-0.0852 ± 0.1639	$(-8.98 \pm 135.61) imes 10^{-3}$	-0.322 ± 1.154
riz (mag)	$+1.84 \times 10^{-3}$	0.0211	10^{7}	+0.201±0.219	+0.401±0.181	-0.0270 ± 1.5419
uerr (mag)	-0.0164	0.0207	10 ⁵	-0.480 ± 0.223	-0.0589 ± 0.1847	-2.54 ± 1.57
airu (mag)	1.15	0.0921	10 ⁶	-0.0583 ± 0.0502	-0.0700 ± 0.0415	-0.0838 ± 0.3532
seeu (arcsec)	1.54	0.175	10 ⁶	-0.176 ± 0.026	-0.124 ± 0.022	-0.198 ± 0.186
seer (arcsec)	1.35	0.164	10 ⁶	-0.162 ± 0.028	-0.112 ± 0.023	-0.130 ± 0.198
skyu (maggies/arcsec 2)	22.2	0.230	10 ⁶	$(-3.25 \pm 20.10) \times 10^{-3}$	+0.0265±0.0166	-0.170 ± 0.141
skyi (maggies/arcsec 2)	20.3	0.216	10 ⁶	$(-9.28 \pm 21.40) \times 10^{-3}$	+0.0464±0.0177	-0.0936 ± 0.1506
mjd (days)	52505	552	10^{2}	$(+3.4 \pm 8.4) \times 10^{-6}$	$(+1.92 \pm 0.69) \times 10^{-5}$	$(+1.52 \pm 0.59) \times 10^{-4}$
cam1	$+1.19 \times 10^{-9}$	2.85×10^{-3}	10 ⁶	-2.08 ± 1.62	+1.45±1.34	$+1.33 \pm 11.42$
cam2	-7.11×10^{-10}	2.85×10^{-3}	10 ⁶	-0.324 ± 1.622	-0.697 ± 1.342	+0.125±11.416
cam3	-8.42×10^{-10}	2.85×10^{-3}	10 ⁶	+0.977±1.622	+1.72±1.34	$+7.87 \pm 11.42$
cam4	-1.46×10^{-9}	2.85×10^{-3}	10 ⁶	+4.44±1.62	-4.73 ± 1.34	+8.80±11.42
cam5	-2.92×10^{-9}	2.85×10^{-3}	10 ⁶	-3.32 ± 1.62	-1.97 ± 1.34	-7.72 ± 11.42
ref	-0.0596	0.439	10 ⁶	$(-2.59 \pm 10.53) \times 10^{-4}$	$(+5.00 \pm 8.71) \times 10^{-3}$	+0.0299±7.41

Power Reductions


Systematic	$10^4 C_{\ell}^{12}$	Δ SNR (σ)
Red stellar contamination	1.59 ± 0.19	-0.8
(g - r) vs. $(u - g)$	1.60 ± 0.19	-0.8
(i-z) vs. $(r-i)$	1.57 ± 0.19	-0.9
Air mass $(u \text{ band})$	1.66 ± 0.19	-0.5
Seeing $(u \text{ band})$	1.06 ± 0.19	-3.6
Seeing $(r \text{ band})$	1.16 ± 0.19	-3.1

	Systematic	$10^5 C_{\ell}^{12}$	Δ SNR (σ)
z01 x z03	Stellar contamination	5.5 ± 2.8	-0.7
	Seeing $(u \text{ band})$	6.6 ± 2.8	-0.3
	Seeing $(r \text{ band})$	6.7 ± 2.8	-0.3

z01 x z02

Seeing, stellar contamination seem to be the dominant systematics.

LSS Surveys

- A catalog of galaxies, quasars, etc. within a given distance/area interval.
- Traces large-scale structure (LSS) back in time.

Dark Energy, Star Formation

• Carries an imprint from very early structure.

Inflation

SDSS - Sloan Digital Sky Survey

Credit: SDSS