

- 3

イロト イヨト イヨト イヨト

Impact of filter design on LSST photo-z

Adeline choyer, Jean-Stephane Ricol, Marc Moniez, Reza Ansari, Kirk Gilmore

LPSC Grenoble, France

December 4 2013

- Constraints on filter are very strict (slope, leakage ...),
- It could be difficult to make filters with such constraints \rightarrow costly filter.
- \Rightarrow What happen on photo-z if those constraints are not reach?
- \Rightarrow Can we relax the filter shape constraints?

A B A B A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Filter modeling

2 Filter slope modification : constant integral

3 Filter slope modification : non constant integral

4 Filter leakage

5 Conclusion

イロト イヨト イヨト イヨ

- Reference Filters :
 - $\bullet \ http://ssg.astro.washington.edu/elsst/magsfilters.shtml?filterinfo$
 - we use y4 filter for y band.
- Construction of six modeled filters :
 - filter \equiv trapezoidal function fitted on LSST filters,
 - we neglect plateau's oscillations and tails on edge.

December 4 2013

Filter slope modification : Constant integral

Filters modification - Constant integral

- Integral = constant,
- Symmetrical modification :
 - $A'B' = (1 + \delta)AB$,
 - C'D' = $(1 + \delta)$ CD.
- \rightarrow Slope : $tan(\phi') = (1 + \delta)tan(\phi)$

- Analysis made for : $\delta = \{-90\%, -50\%, 0, +50\%, +100\%, +200\%, +300\%\}$
- for each analysis, each filter are modified with the same δ .

 Integral of final throughput transmission is not a constant. → (≥) (≥) (≥) (≥) (≥)

Photo-z reconstruction :

- 51 galaxies spectral type interpolated between 6 main SED.
 - main spectral type : El, Sbc, Scd, Irr, SB3, SB2.

- template fitting method,
- Quality cut : LikelihoodRatio (LR) \Rightarrow discrimination between good and outliers $\left(\frac{z_p-z_s}{1+z_s} > 0.15\right)$ galaxies.
- Gorecki & al : arxiv :1301.3010

Flux variation : $flux(\delta = +100\%)/flux(\delta = 0\%)$

- $\bullet\,$ overall change are smaller than a few % for each filter and spectral type.
- Sbc galaxies : change up to 30% at $z \sim 1.5$ in u filter.

• Sbc are not the main spectral type \Rightarrow few effet are expected on photo-z.

Flux variation : $flux(\delta = +100\%)/flux(\delta = 0\%)$

- overall change are smaller than a few % for each filter and spectral type.
- SB2 galaxies : change up to 15% at $z\sim 0.35,\, z\sim 0.8$ in y filter.

• Change compensate each other \Rightarrow few effet are expected on photo-z.

Photo-z performances : Δz as a function of δ

- We keep only galaxies observed in 6 filters (S/N>5).
- $\Delta z = \frac{z_p z_s}{1 + z_s}$,

⇒ We don't observed an impact of changing slope on the photo-z performancies.

• Galaxies S/N>5, in 6 filters.

(ロ) (日) (日) (日) (日)

• Galaxies S/N>5, in 5 filters.

・ロト ・回ト ・ヨト

Filter slope modification : Non constant integral

Filter modification : non constant integral

- Symmetrical modification :
 - $A'B' = AB + \delta AB$,
 - C'D' = CD + δ CD.

 \rightarrow Slope : $tan(\phi') = (1 + \delta)tan(\phi)$

• $\delta = \{-90\%, -50\%, 0, +50\%, +100\%, +200\%, +300\%, +400\%, +500\%\}.$

• when δ increases, z filter overlap y filter.

Filter : integral constant vs non constant

$$\delta=100\%$$
 :

integral constant vs non constant :

• same $\delta \leftrightarrow$ same slope as before.

• Filter integral depends of optics and detector,

• we expect more galaxies when δ increases.

A D >
A D >
A

15 / 20

Photo-z performancies : as a function of z_s

Non constant integral - galaxies observed in 6 filters

(ロ) (日) (日) (日) (日)

16 / 20

Filter leakage

• Constraints on filters :

- Filter R&D : Filter design study result summary, 23/08/2012,
- filter leakage should be < 0.1% H.
- \bullet Modification :
 - from model filter $(\delta = 0)$,
 - $\delta_{leak} \in \{0, 0.1, 1, 5, 10\}$ in %H.

• Leakage impact (in weavelenth range) will be limited by optics and detector throughput.

Photo-z performancies

- $\bullet\,$ Galaxies with S/N>5 in 6 filters,
- Leakage only in u filter.

- $\Rightarrow \text{ no visible} \\ \text{effect if} \\ \delta_{leak} < 1\%,$
 - we obtain similar result if we consider leakage in all filters.

Conclusion and perspectives

Conclusion

- We modified filter slope keeping :
 - integral value, plateau's height, half maximum value.
 - plateau's height, plateau's width.

- No visible impact for z<3 if $\delta \leq +300\%$,
- $z \sim 0.1$: still to be understood.
- $\bullet~$ If leakage in UV filter <1% peak : no visible effect on photo-z reconstruction.
- All those studies are done considering all filters are well known.

Perspectives

- Similar study using Poletta & al (2006) SED library,
- Study in more detail filter leakage.
- What could be a "realistic" filter?

Annexes

LPSC Grenoble, France

December 4 2013

æ

・ロト ・四ト ・ヨト ・ヨト

Integral constante

・ロト ・日ト ・ヨト

δ maximum possible value

• B'C' must be > 0 \Rightarrow maximum value for δ :

$$\delta_{max} = 2\left(\frac{BC}{AB + DC}\right).$$

• maximum possible value for each filter :

filter	u	g	r	i	Z	у
δ_{max}	339%	486%	407%	272%	150%	/

- If $\delta > \delta_{max}$ then $\delta = \delta_{max}$ for concerned filter.
 - $\delta = 200\% \Rightarrow$ maximal value for z,
 - $\delta = 300\% \Rightarrow$ maximal value for z and i.

Э

4 / 24

・ロト ・ 日 ・ ・ 目 ・ ・

$\overline{\text{Filter}}: \delta = +200\%$

<ロ> (日) (日) (日) (日) (日)

Filter : $\delta = +300\%$

イロト イヨト イヨト イヨ

Ratio between flow : flow $(\delta = +100)/\text{flow}(\delta = 0\%)$

Irregular galaxies

ъ

・ロト ・日ト ・ヨト

Effective flow : $\delta = +100$ vs $\delta = 0\%$

Spiral Galaxies (Sbc)

æ

・ロト ・四ト ・ヨト ・ヨト

Comparison between galaxies Effect on flow : flow($\delta = +300$)-flow($\delta = 0$) vs z_s

Analyse on 5000 1^{st} galaxies : ~ 4800 galaxies.

・ロト ・回ト ・ヨト

Comparison between galaxies Effect on magnitudes : $mag(\delta = 0)$ -mag($\delta = +300$) vs mag($\delta = 0$)

Analyse on 5000 1^{st} galaxies : ~ 4800 galaxies.

24

イロト イヨト イヨト イヨト

Magnitude distribution

December 4 2013 12

æ

イロト イヨト イヨト イヨト

12 / 24

Distribution Δz

0.5 < z < 1.5

2 < z < 2.5

イロト イヨト イヨト イヨト

æ

Number of galaxies

 $LR_{cut} = 0$

$$LR_{cut} = 0.98$$

・ロト ・日ト ・ヨト

ŧ December 4 2013 14 / 24

Photo-z reconstruction, $LR_{cut} = 0$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Integral non constante

・ロト ・日下・・日下

Δz distribution

December 4 2013 17 / 24

æ

イロト イヨト イヨト イヨト

Impact of filter design on photo-z

Number of galaxies

December 4 2013 18 / 24

æ

イロト イヨト イヨト イヨト

z_s

Photo-z reconstruction, $LR_{cut} = 0$

Leakage

电

イロト イヨト イヨト イヨト

Leak in all filter, $LR_{cut} = 0$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Impact of filter design on photo-z

Leak in all filter, $LR_{cut} = 0.98$

◆□ > ◆□ > ◆ □ > ◆ □ > ● □

Poletta SED

25000 λ(Angstrom)