Likelihood Ratio Method

JS Ricol DESC Meeting Pittsburgh

Outlook

- Main ingredients of the simulation:
 - Galaxy catalog
 - SEDs: interpolated templates
- Template fitting PhotoZ reconstruction
- Likelihood Ratio method
- Neural network and template fitting correlation

Galaxies catalog

Home made catalog of 8.10⁹ galaxies Fits files produced by A. Abate Theoretical early density fluctuations + standard cosmology -> galaxies distribution: ra, dec, z

GOODS luminosity functions: M, BType Luminosity functions 10~ (Dahlen) 10 (M)∳ Π All 10 Early-types ate-types Starbursts -22 -20 -18 -16 -24 M_B-5logh₇₀

SEDs Libray of 51 templates interpolated from 6 SEDs El (type=0), Sbc (type=10), Scd (type=20), Im (type=30) - *Coleman et al*, SB1 (type=40), SB2 (type=50) - *Kinney et al*

SEDs are extrapolated into UV using GISSEL synthetic spectra (Bruzual, Charlot)

Fits to Root : 5000 root subcatalogs of 10,000 galaxies each

Apparent magnitude

• Dust reddening: random uniform distribution

E(B-V) = [0, 0.1] for El, [0, 0.3] for others

Attenuation law : Cardelli (El, Sbc, Scd), Calzetti (Im, SB)

- IGM extinction : Madau
- Apparent magnitude errors

LSST:
$$\sigma_X^2 = (0.04 - \gamma_X)x + \gamma_X x^2 + \sigma_{syst}^2$$

 $x = 10^{0.4(m_X - m_{5,X})}$

$$\sigma_{syst} = 0.005$$

Previous surveys : error from data

LSST 10 years of observation

-						
-	и	g	r	i	z	У
Exp.:	56	80	184	184	160	160
m _{5.x} :	26.1	27.4	27.5	26.8	26.1	24.9

Template fitting method

Reconstruct θ ={z, type, E(B-V), N} from **m** = {m_x}

$$\chi^{2} \text{ computed on a} \qquad \qquad \chi^{2}(z, T, E(B-V), N) = \sum_{i=1}^{N_{bandes}} \left(\frac{F_{i}^{obs}(m_{i}) - NF_{i}^{mod}(z, T, E(B-V))}{\sigma\left(F_{i}^{obs}(m_{i}, \sigma(m_{i}))\right)} \right)^{2}$$

Prior (Benitez): $P(z,T|i) = P(z|T,i) \times P(T|i)$

Likelihood Ratio

LR statistical test on 16 parameters $\boldsymbol{\mu}_{i}$:

- number of peaks in the marginalized 1D PDF: $N_{pk}(z)$, $N_{pk}(T)$, $N_{pk}(E(B-V))$,
- relative width/height between main and 2nd peak,
- χ^2 value,
- $z_{\chi 2}$ z_{marg}
- color terms (u-g, g-r, r-i, i-z, z-y)

 $P(\mu_i|G)$, $P(\mu_i|O)$ computed on a training subsample O : |zp-zs|/(1+zs) > 0.15

G : |zp-zs|/(1+zs) < 0.15

Then we can calculate LR for each galaxy in the remaining catalog and use a quality cut on this parameter LR>LR_c to reject outliers

Likelihood ratio :
$$L_R(\mu) = \frac{P(\mu \mid G)}{P(\mu \mid G) + P(\mu \mid O)}$$

Outliers rejection

CFHTLS data

L_{Bc}=0

N

LSST simulation

LR cut (LR \geq LRc) is very powerful to reject outliers Our study on CFHTLS data showed that LR could be trained either on data or simulation with similar results.

PhotoZ analysis for LSST

Catalog:

10⁷ galaxies

- $\sim 10^{6}$ galaxies with S/N>5 in at least 5 bands
- ~ 2.10⁵ galaxies for training (P(μ_i |G), P(μ_i |O) computation)
- ~ 8.10⁵ galaxies for test (LR calculation)

Parameters:

For different zbins we compute

- ngal/dz = the number of galaxies / zbin
- the bias = median
- the RMS = interquartile range
- the percentage of outliers (η)

<u>Errors on parameters</u> estimated by comparing the results of 5 different analysis on 5 independent catalogs

PhotoZ performances for LSST

PhotoZ performances for LSST z > 2.5

Z>2.5

The reconstruction is not bad after LRcut but slightly shifted

LR mostly trained on z \sim 1 galaxies

Training LR in different z bins didn't improve the results.

For some outliers LR(ztrue)~0 but LR(zphot)~1

Need more stats at high z

LRcut vs icut

LR gives much better results than a cut on magnitude

Template fitting versus Neural Network

Pros and Cons Template fitting : Pros : no selection bias ? Cons : need a complete template library

Neural network :

- Pros : no model
- Cons : selection bias

Interesting correlated results

Neural network selection bias

Correlation may be usefull to tag outliers The final PhotoZ reconstruction method could be a hybrid tool taking advantages of both method

Prior preliminary study

$$P(z,T|i) = P(z|T,i) \times P(T|i)$$

Comparison between our old prior parametrization, no prior and new computation

Clear improvement at high z Need further study

ROOT TMVA Factory

ROOT TMVA::Factory

Lighter use than LR 16 variables Rank : Variable : Variable Importance 1 : log(Likelihood2[0])-log(Likelihood1[0]) : 1.056e-01 2:mag1-mag2: 1.040e-01 3:mag2-mag3: 1.006e-01 4: mag3-mag4: 9.469e-02 5 : npeak[0] :9.148e-02 6:mag4-mag5: 8.732e-02 7 : mag0-mag1 : 7.484e-02 8 : raportInt2 : 7.085e-02 9 : npeak[1] : 5.053e-02 10 : log(Likelihood2[1])-log(Likelihood1[1]) : 4.786e-02 11 : loglmax : 4.344e-02 12 : npeak[2] : 4.150e-02 13 : log(Likelihood2[2])-log(Likelihood1[2]) : 4.023e-02 14 : raportInt1 : 2.633e-02 15 : raportInt0 : 2.069e-02 16 : TMath::Abs(varp[0]-varp_marg[0]) :0.000e+00

BDT preliminary results

• LR / BDT method using posterior PDF characteristics of template fitting method is a very useful tool to reject outliers and improve photoZ reconstruction

• Correlation between neural network and template fitting could be used to tag outliers

 More details in Gorecki *et al* published in Astronomy and Astrophysics http://arxiv.org/abs/1301.3010v2