

Cosmology Dependent Covariances with Cosmic Emulators

Juliana Kwan

with Tim Eifler, Salman Habib, Katrin Heitmann, Bhuvnesh Jain, and Elisabeth Krause

Argonne National Laboratory

December 6, 2013

Computing the Shear Power Spectrum

We are interested in the shear power spectrum for tomographic weak lensing:

$$C^{ij}(l) = \frac{9H_0^4\omega^2}{4c^4} \int_0^{\chi_h} d\chi \, \frac{g^i(\chi)g^j(\chi)}{a^2(\chi)} P_\delta\left(\frac{l}{f_{\mathcal{K}}(\chi)},\chi\right)$$

where

- $g^{j}(\chi)$ is the lensing efficiency (contains source galaxy information).
- $f_{\mathcal{K}}(\chi)$ is the comoving angular diameter distance.
- $a(\chi)$ is the scale factor
- P_{δ} is the matter power spectrum

And its covariance matrix.

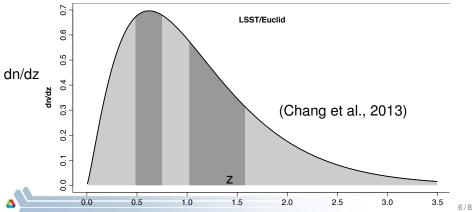
Computing the Covariance Matrix

- The covariance matrix is calculated using CosmoLike: http://www.sas.upenn.edu/~ekrause/CosmoLike/
- ► Cov(C^{ij}(l₁), C^{ij}(l₂)) = Gaussian term + trispectrum + halo sample variance.
- ► Trispectrum term: *T*_{1*h*} + (*T*_{2*h*,(2,2)} + *T*_{2*h*,(1,3)}) + *T*_{3*h*} + *T*_{4*h*} + *T*^{HSV} from halo model (Cooray and Hu, 2001).
- Halo sample variance term as in Sato et al, 2009.
- For details see: Krause et al., (in prep) Eifler et al. 2013 [arXiv:1302.2401] and Huff et al. 2013 [arXiv:1311.1489]

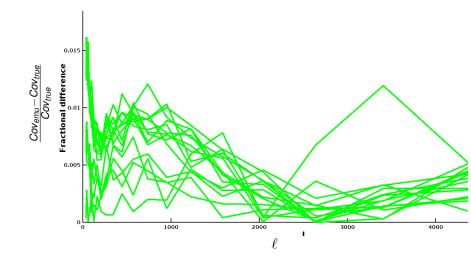
Unfortunately, the covariance matrix:

- Depends on cosmology (see Eifler, 2009, Dodelson and Schneider, 2013).
- Needs to be recalculated at each step of MCMC analysis
- Calculations are too expensive for this to be practical.

Answer: Create an emulator!


How the emulator works:

- Set of high precision measurements (in this case, from PT and halo model) made according to a design.
- A Gaussian Process maps the parameter space.
- The hyperparameters are conditioned according to the measurements from N-body simulations.
- Predictions are made by locating the new parameters in the design matrix and recalculating the covariance function using the known hyperparameters.
- The emulator is only conditioned once to set the hyperparameters, so each prediction is actually quite fast.


Covariance Emulator

- 6 cosmology parameters: ω_m, ω_b, n_s, σ₈, h, w, 100 model design.
- ▶ 5 red\$hift bins between $0 \le z \le 4$
- > 20 bins between $30 \le \& \le 5000$.
- Redshift distribution for LSST modelled as

$$n(z) = N(z)^{\alpha} \exp\left[-(z/z_0)^{\beta}\right], \alpha = 1.27, \beta = 1.02, z_0 = 0.5$$

Preliminary Results

Ongoing Issues:

- Non-Gaussian terms are difficult to emulate.
- Speed is a problem: each prediction is \sim 20 mins.
- Size of matrix inversion is computationally expensive.

Possible solutions:

- Coarser binning?
- Approximate the matrix inversion?
- GPUs?

Nonetheless, the performance of the initial emulator is promising.

