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Figure 5. The non-Gaussian part of the � power-spectrum covariance Tij ,
as measured from G�

ij using the linear-response model of Eq. (6), and using
an ‘↵ model’ approximation to Tij found in (Neyrinck 2011b). Because of
the steep increase, we use a sinh�1 transform for plotting, which becomes
logarithmic for large values of its argument. While the ↵ model should not
be taken too seriously as it is only an approximation, the qualitative agree-
ment (except, perhaps, far from the diagonal) between the two plots sug-
gests that the linear-response model captures most of the relevant effects.

� lnPi =
@ lnPi

@ lnP init

j

� lnP init

j = Gij� lnP init

j , (5)

giving

Cij = h� lnPi� lnPji =
⌦
Gik� lnP init

k Gjl� lnP init

l

↵
. (6)

Since the Gaussian C init

ij ⌘
⌦
� lnP init

i � lnP init

j

↵
= 2�Kij/Ni,

where Ni is the number of modes in bin i,

C = GCinitG>. (7)

Now, suppose we want to estimate all lnP init

i from the final
power spectrum. The Fisher matrix Fij to use to predict constraints
on this initial power in bins i and j would be

Fij =

@ lnPk

@ lnP init

i

(C�1

)kl
@ lnPl

@ lnP init

j

= Gki(C
�1

)klGlj , (8)

or

F = G>
(GCinitG>

)

�1G = (Cinit
)

�1. (9)

So the covariance matrix of parameters that consist of the initial
power spectrum in bins is just the initial, Gaussian power-spectrum
covariance matrix. This suggests no Fisher-information loss!

However, this calculation assumes that the final power spec-
trum is an entirely deterministic, invertible, linear transformation of
the initial power spectrum, with no sources of noise. This is not the
case; it neglects at least a couple of things: the non-linear coupling
of pairs of power-spectrum spikes, and realization-to-realization
fluctuations in the Gij matrix, which can depend on both the power
spectrum itself, and also on mode correlations (present even in
a Gaussian field) that affect the halo mass function, which sub-
stantially affects translinear-scale power, at least in the halo model
(Neyrinck et al. 2006).

One neglected factor that can be investigated in a straightfor-
ward extension of the present framework is the non-linear coupling
of spike pairs. But this would involve a simulation for each pair of
wavenumber bins, i.e. with 23 bins, 23⇥ 22 = 506 additional sim-
ulations. We plan to run this brute-force ensemble in future work.
For now, we compare the covariance matrix from Eq. (5) to one
estimated otherwise.

Fig. 5 shows the non-Gaussian part of the � power-spectrum
covariance T �

ij ⌘ C�
ij(NiNj)

1/2 � �Kij , both in the linear-response
model from G�

ij in Eq. (6), and from the fluctuating-multiplicative-
bias model of Neyrinck (2011b), a rather accurate approximation
to the covariance as measured from the Coyote Universe simu-
lations (Lawrence et al. 2010). In this model, the non-Gaussian
covariance is given by T �

ij = ↵(NiNj)
1/2, where ↵ is the frac-

tional realization-to-realization variance of the nonlinear density-
field variance in nonlinear-scale cells. We use ↵ = 0.0035 for this
plot, which is ↵ at z = 0 as found by Neyrinck (2011b), scaled to
the (256h�1 Mpc)3 volume of the present simulations.

We emphasize that the ↵ model is approximate, but qualita-
tively, it agrees with the linear-response model rather well, sug-
gesting that additional terms in the covariance may indeed be sub-
dominant. The main discrepancies are in highly off-diagonal terms.

6 CONCLUSIONS

We used an N -body experiment to track where initial power-
spectrum features get deposited in final-conditions density power
spectra. For the usual overdensity field �, our results qualitatively
agree with the common wisdom that initial power migrates from
large to small scales. However, this seems to be largely because
the � field is dominated by overdense spikes. When the density is
transformed to have a more-Gaussian PDF, increasing the statistical
weight of low-density regions (where patches imprinted with initial
fluctuations expand rather than contract in comoving coordinates),
initial spikes spread rather symmetrically, both upward and down-
ward in scale. In fact, in P

1/(1+�), almost exclusively sensitive to
underdense regions, initially small scales are magnified (AS13). In
these power spectra, initial small-scale spikes leave much more ev-
idence at z = 0 than in P� .

The spread of power in the Gaussianized variables such as
ln(1+�) is qualitatively captured by a toy model we give, in which
patches imprinted with initial fluctuations expand or contract ac-
cording to a spherical-collapse model. In the future, it would be
interesting to refine this model for greater accuracy, and investigate
whether it might be modified successfully to other power spectra.

We also begin to apply our results to the theoretical question
of how degrees of freedom present in the initial density field, es-
sentially a sum of many spikes such as the ones we use, disap-
pear from the final-conditions, coarse-grained density field. How-
ever, this will require further measurements, because in our frame-
work, fluctuations in the final power spectrum are a linear, invert-
ible transformation of the initial power spectrum, given by a ma-
trix Gij . In reality, though, information is lost because of a few
neglected effects, which we will analyze in future work. We do,
however, find that Gij gives a rather accurate description of the P�

covariance matrix, suggesting that one of these effects (the nonlin-
ear coupling of spike pairs) is not dominant. Thus, ‘ringing’ the
initial power spectrum as we do offers an interesting technique to
estimate power-spectrum covariances and Fisher information, by
tracking the true, initial degrees of freedom in the Universe.
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