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Figure 1. Cell-to-cell correlation between the linear initial overdensity field D1δ(q, z = 100) and the corresponding approximations for the divergence of
the displacement field for the 10th realisation of our set of simulations. The solid black line represents the LPT/Zeldovich approximation and the green curve
the local SC model, which approximately fits the mean N -body relation. The nonlocal relations are given by the contours for various approximations: left
panel: 2LPT (quadratic relation). middle panel: 3LPT (cubic relation) and right panel: combined 2LPT-SC with rS = 4 Mpc/h. The dark colour-code
indicates a high number and the light colour-code a low number of cells.

timations from large scale structure surveys has raised the inter-
est in approximate efficient structure formation models, which can
be massively used. See Scoccimarro & Sheth (2002); Monaco et al.
(2002); Manera et al. (2012) for generation of mock galaxy cata-
logues; and Schneider et al. (2011) to increase the volume of a set
of N -body simulations with smaller volumes. An improvement to
linear LPT is given by second order LPT (2LPT) including non-
local tidal field corrections. However, this is known to be a poor es-
timator in high and low density regions, being strongly limited by
shell crossing (Sahni & Shandarin 1996; Neyrinck 2013). Recently,
local fits based on the spherical collapse model have been proposed
(Mohayaee et al. 2006; Neyrinck 2013), which better match the
mean stretching parameter (divergence of the displacement field)
of N -body simulations. We propose in this work to combine the
superiority of 2LPT on large scales with the more accurate treat-
ment of the spherical collapse (SC) model on small scales includ-
ing a collapse truncation of the stretching parameter, which acts as
a viscosity term. Our algorithm splits the displacement field into a
long-range and a short-range component, the first one being given
by 2LPT and the second one by the truncated SC model. Both are
combined by using a Gaussian filter with smoothing scales of 4-5
Mpc/h radii, being this scale the only free parameter in our model.

2 THEORY

Let us define the positions of a set of test particles at an initial time
ti by q and call them the Lagrangian positions. The final comoving
positions x (called Eulerian positions) corresponding to the same
set of test particles at a final time tf are related to the Lagrangian
positions q through the displacement field,Ψ:

x = q +Ψ . (1)

Hence, the displacement field encodes the whole action of gravity
during cosmic evolution. An approximation is to consider that the
displacement field is a function of the initial conditions only, and
can be described by straight paths. The various models consider
the relation between the divergence of the displacement field and
the linear initial field: ψ = ψ(δ(1)) ≡ ∇ · Ψ(δ(1)), where ψ is
the so-called stretching parameter. Let us call the previous equation
the stretching parameter relation. Lagrangian perturbation theory to

third order yields the following expression for curl-free fields (see
Buchert 1994; Bouchet et al. 1995; Catelan 1995):

ψ3LPT ≡ ∇ ·Ψ3LPT (2)
= −D1δ

(1) +D2δ
(2) +D3aδ

(3)
a +D3bδ

(3)
b ,

where D1 is the linear growth factor, D2 the second order growth
factor, {D3a, D3b, D3c} are the 3rd order growth factors corre-
sponding to the gradient of two scalar potentials (φ(3)

a ,φ(3)
b ). Partic-

ular expressions can be found in Bouchet et al. (1995) and Catelan
(1995): D2 = −3/7Ω−1/143D2

1 , D3a = −1/3Ω−4/275D3
1 ,

D3b = 1/4 · 10/21Ω−269/17875D3
1 . The term δ(2)(q) represents

the ‘second-order overdensity’ and is related to the linear overden-
sity field by the following quadratic expression:

δ(2)(q) =
∑

i>j

(

φ(1)
,ii (q)φ

(1)
,jj (q)− [φ(1)

,ij (q)]
2
)

, (3)

The potentials φ(1) and φ(2) are obtained by solving a pair of Pois-
son equations: ∇2

qφ
(1)(q) = δ(1)(q), where δ(1)(q) is the linear

overdensity, and ∇2
qφ

(2)(q) = δ(2)(q). The first term is cubic in
the linear potential

δ(3)a ≡ µ(3)(φ(1)) = det
(

φ(1)
,ij

)

, (4)

and the second term is the interaction term between the first- and
the second-order potentials:

δ(3)b ≡ µ(2)(φ(1),φ(2)) =
1
2

∑

i"=j

(

φ(2)
,ii φ

(1)
,jj − φ(2)

,ij φ
(1)
,ji

)

, (5)

(see Buchert 1994; Bouchet et al. 1995; Catelan 1995). Keeping
terms only to first order is called the Zeldovich approximation
(Zel’dovich 1970) and keeping terms to second order yields the
2LPT approximation.

Based on the nonlinear spherical collapse approximation, de-
veloped by Bernardeau (1994), Mohayaee et al. (2006) found a lo-
cal nonlinear expression for the stretching parameter relation:

ψSC ≡ ∇ ·ΨSC = 3

[

(

1−
2
3
D1δ

(1)

)1/2

− 1

]

. (6)

This analytic formula has been recently found to fit very well the
mean stretching parameter relation from an N -body simulation

c© 0000 RAS, MNRAS 000, 000–000


