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of the power spectrum, which may be modeled by a Gaussian
smoothing of the typical uncertainty scale (Monaco et al. 2013).
As a consequence, the power spectra predicted by perturbation the-
ory lie below the linear power spectrum instead of developing the
characteristic nonlinear excess of power with respect to the lin-
ear power spectrum at modes k >∼ 0.1h Mpc−1. Interesting alter-
natives have been recently proposed, such as re-scaling N -body
simulations to account for a change in the cosmological parame-
ters (Angulo & White 2010), compute covariance matrices from a
set of small-volume simulations (Schneider et al. 2011), or includ-
ing 2LPT within the Vlasov equations solver to speed up N -body
codes (COLA, Tassev et al. 2013). In this letter, we propose to use
an extremely efficient approach based on low resolution one-step
perturbation theory solvers. We rely on Augmented LPT (ALPT),
which is based on a combination of second order LPT on large
scales with the spherical collapse model on smaller scales, sup-
pressing in this way shell-crossing with an improved modelling of
filaments (Kitaura & Heß 2013). In this work, we introduce the pe-
culiar velocity within this formalism to model redshift-space dis-
tortions.

To account for the missing power of perturbative approaches
at high modes, and at the same time for the scale-dependent bias
of halos, we use an exponential bias (Cen & Ostriker 1993). Such a
model has been recently proposed to sample halos below the resolu-
tion of dark matter simulations (de la Torre & Peacock 2013). This
model is related to the lognormal model (Coles & Jones 1991), and
thus to the linear component of the density field (Kitaura & Angulo
2012), solving the negative densities problem (Kitaura et al. 2010)
of Fry & Gaztanaga (1993)’s formulation. Here, we propose to
model the statistics of halos with a Poissonian and a negative bi-
nomial distribution function depending on the density regime. The
required parameters in our model are calibrated with one of the new
set of the publicly available BigMultiDark simulations1 (Heß et al
in prep).

Our approach is not only useful to generate mock cata-
logues, but also for inference analysis of the large-scale struc-
ture (density fields, power spectra, etc), improving previous mod-
els based on a linear bias and on the Poisson assumption (see e.g.
Kitaura & Enßlin 2008; Kitaura et al. 2010).

This letter is structured as follows: in the next section (§2) we
present our method. We then show (§3) our numerical experiments
calibrating our mock catalogues with N -body simulations. Finally
(§4) we present our conclusions and discussion.

2 METHOD

Our approach combines an efficient structure formation model with
a local, nonlinear, scale-dependent and stochastic biasing scheme.
The resulting computer code is dubbed PATCHY (PerturbAtion
Theory Catalog generator of Halo and galaxY distributions).

2.1 Structure formation model

We use Augmented Lagrangian Perturbation Theory (ALPT) to
simulate structure formation (Kitaura & Heß 2013). In this approx-
imation the displacement field Ψ(q, z), mapping a distribution of
dark matter particles at initial Lagrangian positions q to the final
Eulerian positions x(z) at redshift z (x(z) = q+Ψ(q, z)), is split

1 http://www.multidark.org
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Figure 1. Slices of thickness 20 h−1 Mpc and 1250 h−1 Mpc side of a
PATCHY simulation through the dark matter density field (on the left) and
through the corresponding halo field (on the right). The logarithm of the
density fields are shown. Lighter regions represent higher densities.

into a long-rangeΨL(q, z) and a short-range componentΨS(q, z),
i.e. Ψ(q, z) = ΨL(q, z) + ΨS(q, z). We rely on 2LPT for the
long-range component:

Ψ2LPT = −D∇φ(1) +D2∇φ(2) , (1)

where D is the linear growth factor and D2 $ −3/7Ω−1/143D2

(for details on 2LPT see Buchert 1994; Bouchet et al. 1995;
Catelan 1995). The potentials φ(1) and φ(2) are obtained by solving
a pair of Poisson equations:∇2φ(1) = δ(1), where δ(1) is the linear
overdensity, and ∇2φ(2) = δ(2). The second order nonlinear term
δ(2) is fully determined by the linear overdensity field δ(1) through
the following quadratic expression:

δ(2) ≡
∑

i>j

(

φ(1)
,ii φ

(1)
,jj − [φ(1)

,ij ]
2
)

, (2)

where we use the following notation φ,ij ≡ ∂2φ/∂qi∂qj , and the
indices i, j run over the three Cartesian coordinates.

The resulting displacement field is filtered with a kernel
K: ΨL(q, z) = K(q, rS) ◦ Ψ2LPT(q, z). We apply a Gaus-
sian filter K(q, rS)= exp (−|q|2/(2r2S)), with rS being the
smoothing radius. We use the spherical collapse approximation
to model the short-range component ΨSC(q, z) (see Bernardeau
1994; Mohayaee et al. 2006; Neyrinck 2013): ΨS(q, z) =
(1−K(q, rS)) ◦ΨSC(q, z), where

ΨSC = ∇∇−2

[

3

(

(

1−
2
3
Dδ(1)

)1/2

− 1

)]

. (3)

The combined ALPT displacement field

ΨALPT(q, z) = K(q, rS)◦Ψ2LPT(q, z)+(1−K(q, rS))◦ΨSC(q, z)
(4)

is used to move a set of homogenously distributed particles from
Lagrangian initial conditions to the Eulerian final ones. We then
grid the particles following a clouds-in-cell scheme to produce a
smooth density field δALPT.

2.2 Deterministic biasing

The relation between the halo distribution and the underly-
ing dark matter density field is known to be nonlinear, nonlo-
cal and stochastic (Press & Schechter 1974; Peacock & Heavens
1985; Bardeen et al. 1986; Fry & Gaztanaga 1993; Mo & White
1996; Dekel & Lahav 1999; Sheth & Lemson 1999; Seljak 2000;
Berlind & Weinberg 2002; Smith et al. 2007; Desjacques et al.

c© 0000 RAS, MNRAS 000, 000–000


