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Figure 1. Pixels are colored according to the quantities listed on the left edge of the plots; for quantities exceeding 1, contours appear at successive powers of
2. Top row: the normalized non-Gaussian part of the covariance matrix Tij. Middle row: an approximation to Tij, using α = Var(σ 2

cell)/σ
4
cell, measured from each

simulation’s ensemble of sinusoidal weightings, and geometrically averaged across simulations. Bottom row: Tij for the power spectrum normalized by the cell-density
variance, P (k)/σ 2

cell, equivalent to the power spectrum of (δ/σcell). (The displayed range of k includes modes not directly modulated by the weightings and below the
Nyquist k. The cell sizes are 1300/128, 1300/256, and 1300/512 Mpc, roughly the listed values in h−1 Mpc.)
(A color version of this figure is available in the online journal.)

has a different set of cosmological parameters, each of them
a plausible (given current observational constraints) concor-
dance ΛCDM model. The simulations occupy an orthogonal-
array-Latin-hypercube in the five-dimensional parameter space
Ωmh2 ∈ [0.12, 0.155], Ωbh

2 ∈ [0.0215, 0.0235], ns ∈ [0.85,
1.05], w ∈ [−1.3,−0.7], and σ8 ∈ [0.61, 0.9]. The re-
maining cosmological parameters, e.g., h, are set to match
the tight cosmic microwave background (CMB) constraint on
the ratio of the last-scattering-surface distance to the sound-
horizon scale. The 10243-particle simulations have a box size
of 1300 Mpc, fixed in Mpc (not h−1 Mpc) to roughly line up
baryon-acoustic-oscillation (BAO) features in k among different
cosmologies. Their resolution is sufficient for power-spectrum
measurements accurate at the sub-percent level at scales down
to k = 1 h Mpc−1. We measured power spectra on grids with
nearest-grid-point density assignment, not correcting for the
pixel window function on the 1283–5123 grids we use.

The variable set of cosmologies prevented estimating covari-
ances by directly comparing power spectra among simulations.
So, we measured covariances within each simulation separately,
using 248 (combinations of no weighting, and the first and sec-
ond overtones in each Cartesian direction) sinusoidal weightings
prescribed by HRS. We then averaged the covariance matrices
from different cosmologies together to reduce noise. Arguably,
mixing cosmologies in this way is a good thing, decreasing the
dependence on cosmological parameters.

We did not use the covariance of the power spectrum
P itself, but of ln P , defining Cij ≡ 〈∆ ln Pi∆ ln Pj 〉 =

〈∆Pi∆Pj 〉/〈Pi〉〈Pj 〉. Averaging this covariance matrix across
cosmologies is more stable than the covariance matrix of P it-
self. We also define the quantity Tij ≡ Cij(NiNj )1/2 − 2δK

ij ,
where δK

ij is a unit matrix and Ni is the number of modes in
bin i. Tij, zero for a Gaussian random field, is a measure of the
non-Gaussian component of a covariance matrix, normalized to
the Gaussian component. Conveniently for plotting purposes, it
has roughly uniform noise properties.

The top row of Figure 1 shows Tij, measured from the
simulations. As the middle row shows, Tij is well approximated
by Tij = α(NiNj )1/2, for α = Var(σ 2

cell)/σ
4
cell. Here, Var(σ 2

cell)
is the variance of the measured (not linear-theory) cell-density
variance σ 2

cell among sinusoidally weighted density fields. α,
proportional to a variance, is inversely proportional to the
volume V = (1.3 Gpc)3/2 (the sinusoidal weightings effectively
halve the volume).

The approximate form of this covariance matrix is that of a
Gaussian field, with additional power proportional to a scale-
independent bias. Consider a field with a power spectrum
Pi = b〈Pi〉 + P G

i . Here PG is the power spectrum of a Gaussian
random field such that 〈Pi〉 = 〈P G

i 〉, and b is a variable scale-
independent bias, uncorrelated with fluctuations in PG, with
〈b〉 = 0. (Suppose b > −1, e.g., is lognormally distributed, to
avoid Pi < 0.) P’s covariance matrix is

Cij = 〈b2〉〈Pi〉〈Pj 〉 +
〈
∆P G

i ∆P G
j

〉
. (1)
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