

Elastic Electron (Positron) – Proton Scattering at the EIC

Barak Schmookler Start Date: December 2018 Main Supervisor: Abhay Deshpande

Electron-Proton Cross Section

Differential Cross Section in the **Nucleon Rest Frame**:

$$\frac{d\sigma}{d\Omega_{e}} = \left(\frac{d\sigma}{d\Omega_{e}}\right)_{Mott} \frac{\epsilon G_{E}^{2} + \tau G_{M}^{2}}{\epsilon(1+\tau)} \qquad \tau \equiv \frac{Q^{2}}{4M_{p}^{2}}$$

$$\left(\frac{d\sigma}{d\Omega_{e}}\right)_{Mott} = \frac{\alpha^{2} \cos^{2}\left(\frac{\theta_{e}}{2}\right)}{4E_{e}^{2} \sin^{4}\left(\frac{\theta_{e}}{2}\right)} \frac{E_{e}^{\prime}}{E_{e}} \qquad \epsilon \equiv \left[1 + 2(1+\tau) \tan^{2}\left(\frac{\theta_{e}}{2}\right)\right]^{-1} \qquad e^{-\tau} \qquad e^{-\tau}$$

$$\sigma_{R} = \epsilon G_{E}^{2} + \tau G_{M}^{2}$$
Electron-Proton Elastic Scattering:

p

Electron-Proton Cross Section at EIC Energies

Lorentz Invariant Differential Cross Section:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} = \frac{4\pi\alpha^2}{Q^4} \left[\frac{G_E^2 + \tau G_M^2}{(1+\tau)} \left(1 - y - \frac{M^2 y^2}{Q^2} \right) + \frac{1}{2} y^2 G_M^2 \right]$$

Electron-Proton Cross Section at EIC Energies

Lorentz Invariant Differential Cross Section:

Expected Number of Elastic Events at the *EIC*

A luminosity of 10⁻³⁴ cm⁻² s⁻¹ -> 100 fb⁻¹ per year

Expected Number of Elastic Events at the EIC

Expected Number of Elastic Events at the EIC

The *EIC* will allow us to probe the highest-ever values of Q^2

 \mathbf{E}_{e}^{\prime}

Kinematics

Kinematics

Kinematics

So we probably can do this...but what will we learn?

- Precision G_M required to study approach of QCD scaling in Dirac F₁ Form Factor
- Constraints on GPDs at high-x & high-t via sum rules
- Possible increased sensitivity to hard two-photon exchange

effects

C.F Perdrisat, V. Punjabi, M. Vanderhaeghen, *Progress* in Particle and Nuclear Physics 59 (2007) 694–764

- Create an elastic generator that we'll mix with some minimum bias DIS events and run through detector simulations
- 2. Add non-zero crossing angle to generator for both *eRHIC* and *JLEIC*

- 1. Generate events in nucleon rest frame
 - Either generate uniformly and weight events...
 - ...Or generate according to cross section
- 2. Boost to lab frame for analysis

- 1. Generate events in nucleon rest frame
 - Either generate uniformly and weight events...
 - ...Or generate according to cross section
- 2. Boost to lab frame for analysis

Elastic Differential Cross Section vs. Q²

Elastic Differential Cross Section vs. Q²

Elastic Differential Cross Section vs. Q²

- Create an elastic generator that we'll mix with some minimum bias DIS events and run through detector simulations
- 2. Add non-zero crossing angle to generator for both *eRHIC* and *JLEIC*

- Create an elastic generator that we'll mix with some minimum bias DIS events and run through detector simulations
- 2. Add non-zero crossing angle to generator for both *eRHIC* and *JLEIC* <
- 3. Perform similar studies for elastic scattering on the deuteron can we use this to measure tensor polarization of deuteron beam?

$$P_{Z} = \frac{n^{+} - n^{-}}{n^{+} + n^{-} + n^{0}} \qquad \qquad \frac{d\sigma}{d\Omega} = \frac{\sigma_{M}}{1 + \frac{2E}{M_{d}} \sin^{2} \frac{\theta}{2}} \times \left[A(Q^{2}) + B(Q^{2}) \tan^{2} \frac{\theta}{2}\right] \\ \times \left[1 + \rho_{20} \cdot t_{20}(Q^{2}, \theta) + 2Re\rho_{21} \cdot t_{21}(Q^{2}, \theta) + 2Re\rho_{22} \cdot t_{22}(Q^{2}, \theta) + h\rho_{10} \cdot t_{10}(Q^{2}, \theta) + 2hRe\rho_{11} \cdot t_{11}(Q^{2}, \theta)\right]$$

$$P_{ZZ} = \frac{n^{+} + n^{-} - 2n^{0}}{n^{+} + n^{-} + n^{0}}$$

Garçon M., Van Orden J.W. (2001), The Deuteron: Structure and Form Factors

- Create an elastic generator that we'll mix with some minimum bias DIS events and run through detector simulations
- 2. Add non-zero crossing angle to generator for both *eRHIC* and *JLEIC* <
- 3. Perform similar studies for elastic scattering on the deuteron can we use this to measure tensor polarization of deuteron beam?
- 4. Look at the possibility of polarization transfer measurements at the *EIC*
- 5. Hard two-photon exchange with positrons?

Proton Form Factor Discrepancy

If discrepancy is due to hard two-photon exchange, we should observe an asymmetry between the electron-proton and positron-proton elastic cross sections

A. Schmidt, Measuring the lepton sign asymmetry in elastic electron-proton scattering with OLYMPUS

Proton Form Factor Discrepancy

If discrepancy is due to hard two-photon exchange, we should observe an asymmetry between the electron-proton and positron-proton elastic cross sections

A. Schmidt, Measuring the lepton sign asymmetry in elastic electron-proton scattering with OLYMPUS

Possibility of Polarization Transfer Measurements at the EIC

Possibility of Polarization Transfer Measurements at the EIC

It appears much lower beam energies would be needed to make these measurements

What about electron-positron asymmetry?

Summary: Elastic Scattering

- We think it will be possible to measure elastic electron-proton cross sections at high Q² at the EIC
- >We are currently conducting simulation studies on this topic
- We are starting to investigate the possibilities with elastic electrondeuteron scattering

Kinematic Reconstruction for electronnucleus DIS

- We usually use the scattered electron to reconstruct the standard kinematic variables (e.g. x, y, Q²). But in certain cases we cannot:
 - The scattered electron is not detected
 - There is no scattered electron (i.e. chargedcurrent events)
 - The scattered electron is reconstructed poorly
- In these cases, we must use the final hadronic state.
- Well-established methods have been developed for electron-proton scattering.
- We are using various event generators to look at reconstruction for electron-nucleus scattering

Studies of Short-Range Correlations (SRCs) at the EIC

- Working to combine an SRC quasi-elastic generator with the *BeAGLE* generator
- Look at the possibility of studying SRC events at the EIC

Nucleons from e+C JLEIC 5x50 Q^2 > 3 GeV² x>1.2

LDRD Proposal: Tagge Short-Range Correlations for medium to heavy ion at JLEIC

Kinematic Reconstruction for electronnucleus DIS

- We usually use the scattered electron to reconstruct the standard kinematic variables (e.g. x, y, Q²). But in certain cases we cannot:
 - The scattered electron is not detected
 - There is no scattered electron (i.e. chargedcurrent events)
 - The scattered electron is reconstructed poorly
- In these cases, we must use the final hadronic state.
- Well-established methods have been developed for electron-proton scattering.
- We are using various event generators to look at reconstruction for electron-nucleus scattering

Studies of Short-Range Correlations (SRCs) at the EIC

- Working to combine an SRC quasi-elastic generator with the *BeAGLE* generator
- Look at the possibility of studying SRC events at the EIC

Nucleons from e+C JLEIC 5x50 Q^2 > 3 GeV² x>1.2

LDRD Proposal: Tagged Short-Range Correlations for medium to heavy ions at JLEIC

Decay Angular Distribution in DVMP

See talk later today by Athira Vijayakumar!

Spin Structure Function Studies

- > Use models/fits of g_1^p and g_1^n to estimate expected double-spin asymmetries as a function of x and Q² for proton and deuteron beams.
- Possibility of measuring tensor spin structure function b^d₁?

$$\frac{\mathrm{d}^2 \sigma_P}{\mathrm{d}x \mathrm{d}Q^2} \simeq \frac{\mathrm{d}^2 \sigma}{\mathrm{d}x \mathrm{d}Q^2} \left[1 - P_z P_B D A_1^{\mathrm{d}} + \frac{1}{2} P_{zz} A_{zz}^{\mathrm{d}} \right]$$

The HERMES Collaboration: First Aeasurement of the Tensor Structure Function b_1 of the Deuteron.

$$b_1^{\rm d} = -\frac{3}{2} A_{zz}^{\rm d} F_1^{\rm d}$$

Decay Angular Distribution in DVMP

See talk later today by Athira Vijayakumar!

Spin Structure Function Studies

- > Use models/fits of g_1^p and g_1^n to estimate expected double-spin asymmetries as a function of x and Q² for proton and deuteron beams.
- Possibility of measuring tensor spin structure function b^d₁?

$$\frac{\mathrm{d}^2 \sigma_P}{\mathrm{d}x \mathrm{d}Q^2} \simeq \frac{\mathrm{d}^2 \sigma}{\mathrm{d}x \mathrm{d}Q^2} \left[1 - P_z P_B D A_1^{\mathrm{d}} + \frac{1}{2} P_{zz} A_{zz}^{\mathrm{d}} \right]$$

 $A_{zz}^{\rm d} = \frac{2\sigma^1 - 2\sigma^0}{3\sigma_U P_{zz}^{\rm eff}}$

The HERMES Collaboration: First Measurement of the Tensor Structure Function b_1 of the Deuteron.

$$= -\frac{3}{2}A_{zz}^{\mathrm{d}}F_{1}^{\mathrm{d}}$$

9

 $b_1^{\mathbf{d}}$

Papers and Talks

• Papers:

"Modified structure of protons and neutrons in correlated pairs". Nature 566, 354-358 (2019)

- Talks:
 - ► BNL Seminar: March 2019

➢CFNS Workshop on Forward Physics: September 2019

➢ DNP Meeting: October 2019

BACKUP SLIDES

Kinematics (ignoring electron and proton masses)

$$Q^2 = x s y$$
 $s = 4E_e E_p$ $\varepsilon \simeq \frac{1-y}{1-y+y^2/2}$

Kinematics (ignoring electron and proton masses)

$$Q^2 = x s y$$
 $s = 4E_e E_p$ $\varepsilon \simeq \frac{1-y}{1-y+y^2/2}$

Final State Electron Angle and Energy:

$$\begin{array}{lll} E_{e}' & = & (1 - y) E_{e} + x y E_{p} \\ \cos \theta_{e}' & = & [x y E_{p} - (1 - y) E_{e}] / [x y E_{p} + (1 - y) E_{e}] \\ E_{e}'^{2} \sin^{2} \theta_{e}' & = & 4 x y (1 - y) E_{e} E_{p} \end{array}$$

Final State Proton Angle and Energy:

$$\begin{array}{ll} E_{j} &= y \, E_{e} + x \, (1 - y) \, E_{p} \\ cos \theta_{j} &= [- y \, E_{e} + (1 - y) \, x \, E_{p}] \, / \, [y \, E_{e} + (1 - y) \, x \, E_{p}] \\ E_{j}^{2} \, sin^{2} \theta_{j} &= 4 \, x \, y \, (1 - y) \, E_{e} \, E_{p} \, = \, Q^{2} \, (1 - y) \\ \end{array}$$

Kinematics (ignoring electron and proton masses) $Q^2 = \chi s y$ $s = 4E_e E_p$ $\varepsilon \simeq \frac{1-y}{1-y+y^2/2}$

Final State Electron Angle and Energy:

Final State Proton Angle and Energy:

$$E_{j} = y E_{e} + (1 - y) E_{p}$$

$$cos\theta_{j} = [-y E_{e} + (1 - y) E_{p}] / [y E_{e} + (1 - y) E_{p}]$$

$$E_{j}^{2} sin^{2}\theta_{j} = 4 f y (1 - y) E_{e} E_{p} = Q^{2} (1 - y)$$

