

A journey from the LHC to an EIC with a *short stop* at RHIC and HERA

Zhoudunming Tu (Kong)

Joined date: July 2, 2018

Senior Physicist at CFNS: Thomas Ullrich

A journey from the LHC to an EIC with a *short stop* at RHIC and HERA

...what have we learned so far?

Zhoudunming Tu (Kong)

Joined date: July 2, 2018

Senior Physicist at CFNS: Thomas Ullrich

Collaborators - Mentors - Advisors

- Entanglement: Dmtriv Kharzeev, Thomas Ullrich
- H1 experiment: Stefan Schmitt, Hennes Jung, Karin Daum, Anastasia Grebenyuk, Zhenyu Chen, Austin Baty, Wei Li, (and many more coming..)
- STAR experiment: Shuai Yang, Zilong Chang, Thomas Ullrich...
- SRC: Raju Venugopalan, Mark Strikman, Christian Weiss, Mark Baker
- BeAGLE: Mark Baker, Elke Aschenauer, JH Lee, Liang Zheng, Wan Chang

Looking at a proton...

Color confinement – standing QCD problem

- No color object exists in nature.
- mysterious mechanism of confinement?
- Quantum entanglement?

(...totally obvious to some people, while totally insane to some others)

Color confinement – standing QCD problem

- No color object exists in nature.
- mysterious mechanism of confinement?
- Quantum entanglement?

(...totally obvious to some people, while totally insane to some others)

Entanglement entropy might provide evidence

Color confinement – standing QCD problem

- No color object exists in nature.
- mysterious mechanism of confinement?
- Quantum entanglement?

(...totally obvious to some people, while totally insane to some others)

Entanglement entropy might provide evidence

$$S_{EE} = \ln [xG]$$

$$S_{hadron} = -\sum P(N) \ln [P(N)]$$

(~ at low-x gluon dominant)

prediction from theorists

D. Kharzeev and E.Levin, *Phys. Rev. D* 95, 114008 (2017)

(~ local parton-hadron duality))
experiment via hadron
multiplicity distributions

Multiplicity in pp collisions

Submitted to PRL and under review (arXiv:1904.11974)

A strong indication of quantum entanglement

- However, pp collisions are complicated and there are effects, e.g., MPI, color reconnections,...
- Deep inelastic scattering process is "cleaner" for physics interpretation

Science News

NEWS QUANTUM PHYSICS, PARTICLE PHYSICS

An experiment hints at quantum entanglement inside protons

LHC data suggests the subatomic particle's constituent quarks and gluons share weird links BY EMILY CONOVER 11:18AM, MAY 17, 2019

SCIFY/SHUTTERSTOCK

https://www.sciencenews.org/article/experiment-hints-quantum-entanglement-inside-protons

Can we do it in ep DIS?

H1 experiment at HERA

Highest ep collider machine

HERA runs from 1992-2007

Multiplicity in ep DIS

- HERA 2 data from 2006-2007 have a lot of statistics of ep at highest energy
- Previous analysis on multiplicity distributions were either not in the right kinematics nor as detailed.
- This re-analysis of "old" data based on H1 will be a baseline for future EIC and will have its own significance to many aspects, e.g., MC tuning.
- This re-analysis is a proof-of-principle that the old data can be re-analyzed, can still be published, and make an impact!

- Total integrated luminosity used in this analysis ~ 136 pb⁻¹
- $5 < Q^2 < 100 \text{ GeV}^2$, 0.0375 < y < 0.6

Multiplicity in ep DIS @ H1

$$-1.2 < \eta < 1.6$$

$$0 < \eta^* < 4.0$$

Summary on entanglement

- H1 data has been re-analyzed successfully, target for submission to a peer-reviewed journal, e.g., EPJC, by DIS in March. Stay tuned!
- It's being discussed internally how to present the analysis with the idea of entanglement within H1.
- The result is not compatible with theory predictions from entanglement, but the main problem is theory needs to improve as many to-dos and knowns are not ready yet. (for example, Q² evolution on entanglement entropy)
- This is also important to low-Q² and low-x physics.
- New ideas have been developed and can be checked in ep DIS as well.

BeAGLEBenchmark eA Generator for Leptoproduction

- eA event generator based on Pythia 6, DPMJet, FLUKA...
- Embedding pythia event into a nuclear environment. Not a trivial job!
- Find the program here, https://wiki.bnl.gov/eic/index.php/BeAGLE, and will be soon published.
- Continued funding thru EIC Detector R&D, eRD17, for FY 2020.
- Recent talk at MCEG workshop 2019, https://indico.cern.ch/event/845653/overview
- Co-Pls: M. Baker and Z. Tu

A hybrid model consisting of DPMJet and PYTHIA with nPDF EPS09.

Nuclear geometry by DPMJet and nPDF provided by EPS09.

Parton level interaction and jet fragmentation completed in PYTHIA.

Nuclear evaporation (gamma dexcitation/nuclear fission/fermi break up) treated by DPMJet

Energy loss effect from routine by Salgado&Wiedemann to simulate the nuclear fragmentation effect in cold nuclear matter

BeAGLE - SRC

BeAGLE made impacts on many different areas, including EIC R&D machine/detector designs, IR designs, physics simulations on various topics.

One quick example:

Momentum distribution of nucleon, k, in the *pn* rest frame.

Reconstructed from BeAGLE event based on spectator tagging.

ZDC requirements

ZDC < 4mrad

Short-range correlation – deuteron

We are implementing these processes into BeAGLE and it's not trivial. We need more help from the theory side

Short-range correlation – deuteron

We are implementing these processes into BeAGLE and it's not trivial. We need more help from the theory side

Big questions:

- 1) What is the underlying physics of SRC? Dynamics at a very short distance.
- 2) Does SRC provide an ultimate explanation for nuclear modification?
- 3) What is the role of gluons?

Short-range correlation – deuteron

We are implementing these processes into BeAGLE and it's not trivial. We need more help from the theory side

Big questions:

- 1) What is the underlying physics of SRC? Dynamics at a very short distance.
- 2) Does SRC provide an ultimate explanation for nuclear modification?
- 3) What is the role of gluons?

This is such a *rare* exclusive process, anything we can learn before EIC experimentally?

Identical process with low Q²:

- Gluon density in deuteron
- Shadowing/anti-shadowing in light nuclei
- Coherent/incoherent fractions and breakup mechanism.

STAR detector:

- Excellent PID capability, electron ID, for J/psi reco
- Mid-rapidity coverage of tracking, ZDC
- Designated runs on dAu @ 200 GeV with UPC J/psi trigger

Identical process with low Q²:

- Gluon density in deuteron
- Shadowing/anti-shadowing in light nuclei
- Coherent/incoherent fractions and breakup mechanism.

Template based on H1 HERA data for incoherent and dissociative

Work in progress and DO NOT COPY & SHARE

UPC J/psi off Deuteron

Template based on H1 HERA data for incoherent and dissociative

Charge density the *Hulthen*

Other analysis in early stages

- Search for "ridge" in ep DIS and photoproduction
- Dijet photoproduction in ep, photon PDF.
- Azimuthal modulations in ep DIS, in related to Boer-Mulders function
- Entanglement in ep DIS via spin-spin correlation
- Diffractive J/psi and rho in ep collisions, with new observables.
- Photon-photon to dileptons in STAR in small systems (pAu, dAu...)

Ideas are (being) developed and will soon get to the list.

Recent talks

- Plenary talk, "Progress on BeAGLE eA event generator", Nov 2019, Vienna, Austria
- Plenary talk, "Probing SRC via deuteron breakup at an EIC", Workshop on Physics and detector requirements at Zero-Degree of Colliders", Sep 2019, Stony Brook University, USA
- Plenary talk, "Quantum entanglement in high energy collisions", POETIC, Sep 2019, Lawrence Berkeley National Lab, USA
- Parallel talk, "Quantum entanglement in high energy collisions", Initial Stages Conference, June 2019, Columbia University, USA
- Parallel talk, "Quantum entanglement in high energy collisions", AGSRHIC User's meeting, May 2019, Brookhaven National Lab, USA
- Parallel talk, "Quantum entanglement in high energy collisions", DIS, April 2019, Turin, Italy

Summary

- We have done good physics towards the EIC.
- Many analysis (H1 & STAR) are in preparation of paper drafts.
- Many more are also coming along the way.

Thanks for all the supports and discussions happened @CFNS

