Renaud Boussarie

CFNS postdoc since October 1st 2018

Collaborators: Yoshitaka Hatta and Yacine Mehtar-Tani
Potential collaborators: Björn Schenke and Raju Venugopalan

BRODKHRNEN
NATIONAL LABORATORY

QCD at moderate x

$$
Q^{2} \sim s
$$

QCD at moderate x : QCD factorization

Factorization into:

- a hard part \mathcal{H} computed with perturbative methods
- a parton distribution \mathcal{F} non-perturbative (constrained by experimental data or estimated with non-perturbative methods, e.g. lattice QCD)

- Twist expansion

$$
\sigma=\sigma_{0}+\frac{1}{Q} \sigma_{1}+\ldots
$$

- Resummation of logarithms

$$
\sigma_{0}=\sum_{n}\left[A_{n}\left(\alpha_{s} \ln Q^{2}\right)^{n}+\alpha_{s} B_{n}\left(\alpha_{s} \ln Q^{2}\right)^{n} \ldots\right]
$$

- Cancellation of divergences \Leftrightarrow Renormalization of the parton distribution \mathcal{F}
E.g.: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution for a Parton Distribution Function

Operator definition for parton distributions

Parton distribution function

$$
\mathcal{F}(x) \propto \int d z^{+} e^{i \times P^{-} z^{+}}\langle P| F^{-i}\left(z^{+}\right)\left[z^{+}, 0^{+}\right] F^{-i}(0)\left[0^{+}, z^{+}\right]|P\rangle
$$

Transverse Momentum Dependent distribution

$$
\mathcal{F}\left(x, k_{\perp}\right) \propto \int d^{4} z \delta\left(z^{-}\right) e^{i x P^{-} z^{+}+i\left(k_{\perp} \cdot z_{\perp}\right)}\langle P| F^{-i}(z) \mathcal{U}_{z, 0} F^{-i}(0) \mathcal{U}_{0, z}|P\rangle
$$

Operator definition for parton distributions

TMD distribution

$$
\mathcal{F}\left(x, k_{\perp}\right) \propto \int d^{4} z \delta\left(z^{-}\right) e^{i \times P^{-} z^{+}+i\left(k_{\perp} \cdot z_{\perp}\right)}\langle P| F^{-i}(z) \mathcal{U}_{z, 0} F^{-i}(0) \mathcal{U}_{0, z}|P\rangle
$$

Generalized TMD distribution

$$
\mathcal{F}\left(x, k_{\perp}, \Delta\right) \propto \int d^{4} z \delta\left(z^{-}\right) e^{i \times P^{-} z^{+}+i\left(k_{\perp} \cdot z_{\perp}\right)}\langle P+\Delta| F^{-i}(z) \mathcal{U}_{z, 0} F^{-i}(0) \mathcal{U}_{0, z}|P\rangle
$$

0000000000

The family tree of parton distributions

Leading twist gluon TMD distributions

Hadron pol. Parton	Unpolarized	Circular	Linear
Unpolarized	f_{1}^{g}	\emptyset	$h_{1}^{\perp g}$
Longitudinal	\emptyset	$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
Transverse	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1}^{g}, h_{1 T}^{\perp g}$

PDF-spanning
Unpolarized f_{1}^{g}
Helicity $g_{1 L}^{g}$

Naive T-even pure TMDs Naive T-odd pure TMDs
Worm-gear $h_{1 L}^{\perp g}, g_{1 T}^{g}$
Pretzelosity $h_{1}^{\perp g}$
Transversity h_{1}^{g}

Boer-Mulders $h_{1}^{\perp g}$
Sivers $f_{1 T}^{\perp g}$

(So-called) non-universality of TMD distributions:

 The importance of gauge links[Collins, Soper, Sterman], [Brodsky, Hwang, Schmidt], [Belitsky, Ji, Yuan], [Bomhof, Mulders, Pijlman], [Boer, Mulders, Pijlman]
[Kharzeev, Kovchegov, Tuchin]

TMD gauge links

"Non-universality" of quark TMD distributions
Gauge links can be future-pointing or past-pointing

$$
\begin{aligned}
& q^{[+]}\left(x, k_{\perp}\right) \propto\langle P, S| \bar{\psi}\left(\frac{z}{2}\right) \mathcal{U}_{\frac{2}{2},-\frac{z}{2}}^{[+]} \psi\left(-\frac{z}{2}\right)|P, S\rangle \\
& q^{[-]}\left(x, k_{\perp}\right) \propto\langle P, S| \bar{\psi}\left(\frac{z}{2}\right) \mathcal{U}_{\frac{2}{2},-\frac{z}{2}}^{[-]} \psi\left(-\frac{z}{2}\right)|P, S\rangle
\end{aligned}
$$

For naive T-odd distributions, $q^{[+]}=-q^{[-]}$: Sivers effect

The Sivers effect

SIDIS

Final state interactions: $q^{[+]}$

Drell-Yan

Initial state interactions: $q^{[-]}$

The Sivers distribution comes with a relative - sign between SIDIS and DY: different gauge links for a naive T-odd quantity!

TMD gauge links

"Non-universality" of gluon TMD distributions

$\operatorname{Tr}\left[F^{i-}\left(\frac{z}{2}\right) \mathcal{U}^{[-] \dagger} F^{i-}\left(-\frac{z}{2}\right) \mathcal{U}^{[+]}\right]$

Even more possibilities for gluon TMD distributions!

QCD at small x

QCD at large s : semi-classical QCD shockwave effective theory

- Eikonal expansion $\sigma=\sigma_{0}+\frac{1}{s} \sigma_{1}+\ldots$
- Resummation of logarithms $\sigma_{0}=\sum_{n}\left[A_{n}\left(\alpha_{s} \ln s\right)^{n}+\alpha_{s} B_{n}\left(\alpha_{s} \ln s\right)^{n} \ldots\right]$
- Renormalization group equation: Balitsky/Jalilian-Marian-lancu-McLerran-Weigert-Leonidov-Kovner (B/JIMWLK) evolution for the shockwave operators.

Rapidity separation

Let us split the gluonic field between "fast" and "slow" gluons

$$
\begin{aligned}
\mathcal{A}^{\mu a}\left(k^{+}, k^{-}, \vec{k}\right) & =A_{Y_{c}}^{\mu a}\left(\left|k^{+}\right|>e^{-Y_{c}} p^{+}, k^{-}, \vec{k}\right) \\
& +b_{Y_{c}}^{\mu a}\left(\left|k^{+}\right|<e^{-Y_{c}} p^{+}, k^{-}, \vec{k}\right)
\end{aligned}
$$

$$
e^{-Y_{c}} \ll 1
$$

Large longitudinal boost to the projectile frame

$b^{+}\left(x^{+}, x^{-}, \vec{x}\right)$

$$
b^{-}\left(x^{+}, x^{-}, \vec{x}\right)
$$

\longrightarrow

$$
\frac{1}{\Lambda} b^{+}\left(\Lambda x^{+}, \frac{x^{-}}{\Lambda}, \vec{x}\right)
$$

$$
\Lambda b^{-}\left(\Lambda x^{+}, \frac{x^{-}}{\Lambda}, \vec{x}\right)
$$

$$
b^{k}\left(\Lambda x^{+}, \frac{x^{-}}{\Lambda}, \vec{x}\right)
$$

$$
b^{\mu}(x) \rightarrow b^{-}(x) n_{2}^{\mu}=\delta\left(x^{+}\right) \mathbf{B}(\vec{x}) n_{2}^{\mu}+O\left(\sqrt{\frac{m_{t}^{2}}{s}}\right)
$$

Shockwave approximation

Effective Feynman rules in the slow background field

The interactions with the background field can be exponentiated

$$
G i g b^{-} G i g b^{-} G i g b^{-} G i g b^{-} G
$$

$G \quad \mathcal{P} e^{i g \int d x b^{-}} \quad G$

0000000000

Factorized picture

Factorized amplitude

$$
\mathcal{A}^{Y_{c}}=\int d^{D-2} \vec{z}_{1} d^{D-2} \vec{z}_{2} \Phi^{Y_{c}}\left(\vec{z}_{1}, \vec{z}_{2}\right)\left\langle P^{\prime}\right|\left[\operatorname{Tr}\left(U_{\vec{z}_{1}}^{Y_{c}} U_{\vec{z}_{2}}^{Y_{c} \dagger}\right)-N_{c}\right]|P\rangle
$$

Dipole operator $\mathcal{U}_{i j}^{Y_{c}}=\frac{1}{N_{c}} \operatorname{Tr}\left(U_{\bar{Z}_{i}}^{Y_{c}} U_{\bar{z}_{j}}^{Y_{c} \dagger}\right)-1$
Written similarly for any number of Wilson lines in any color representation!
Y_{c} independence: B-JIMWLK hierarchy of equations
[Balitsky, Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner]

Two different kinds of gluon distributions

Moderate x distributions
GTMD, GPD, TMD, PDF...

$$
\left\langle P^{(\prime)}\right| F^{-i} W F^{-j} W|P\rangle \quad\left\langle P^{(\prime)}\right| \operatorname{tr}\left(U_{1} U_{2}^{\dagger}\right)|P\rangle
$$

Low x distributions

Dipole scattering amplitude

TMD distributions from QCD shockwaves

From the CGC to a TMD

From Wilson lines...

$$
\langle P| \operatorname{Tr}\left(U_{\frac{r}{2}} U_{-\frac{r}{2}}^{\dagger}\right)|P\rangle
$$

To a parton distribution

$$
\langle P| \operatorname{Tr}\left(\partial^{i} U_{\frac{r}{2}} \partial^{i} U_{-\frac{r}{2}}^{\dagger}\right)|P\rangle
$$

From the CGC to a TMD

Staple gauge links from a Wilson line operator

[Dominguez, Marquet, Xiao, Yuan]
Consider the derivative of a path-ordered Wilson line, denoting

$$
\left[x_{1}^{+}, x_{2}^{+}\right]_{\vec{x}} \equiv \mathcal{P} \exp \left[i g \int_{x_{1}^{+}}^{x_{2}^{+}} d x^{+} b^{-}\left(x^{+}, \vec{x}\right)\right]
$$

For a given shockwave operator $U_{\vec{x}}=[-\infty,+\infty]_{\vec{x}}$

$$
\begin{gathered}
\partial^{i} U_{\bar{x}}=i g \int d x^{+}\left[-\infty, x^{+}\right]_{\vec{x}} F^{-i}\left(x^{+}, \vec{x}\right)\left[x^{+},+\infty\right]_{\bar{x}} \\
\partial^{j} U_{\vec{x}}^{\dagger}=-i g \int d x^{+}\left[+\infty, x^{+}\right]_{\bar{x}} F^{-j}\left(x^{+}, \vec{x}\right)\left[x^{+},-\infty\right]_{\bar{x}} \\
\left(\partial^{i} U_{\vec{x}}^{\dagger}\right) U_{\bar{x}}=-i g \int d x^{+}\left[+\infty, x^{+}\right]_{\bar{x}} F^{-i}\left(x^{+}, \vec{x}\right)\left[x^{+},+\infty\right]_{\vec{x}}
\end{gathered}
$$

Taking the derivative of a shockwave operator allows to extract a physical gluon

From the CGC to a TMD

The dipole TMD

$$
\begin{aligned}
\mathcal{F}_{q g}^{(1)}\left(x, k_{\perp}\right) & \propto \int d^{4} z \delta\left(z^{+}\right) e^{i x(P \cdot z)+i\left(k_{\perp} \cdot z_{\perp}\right)}\langle P| \operatorname{Tr}\left[F^{i-}\left(\frac{z}{2}\right) \mathcal{U}^{[-] \dagger} F^{i-}\left(-\frac{z}{2}\right) \mathcal{U}^{[+]}\right]|P\rangle \\
& \rightarrow \int d^{2} z_{\perp} e^{i\left(k_{\perp} \cdot z_{\perp}\right)}\langle P| \operatorname{Tr}\left[\left(\partial^{i} U_{\frac{2}{2}}^{\dagger}\right)\left(\partial^{i} U_{-\frac{z}{2}}\right)\right]|P\rangle
\end{aligned}
$$

From the CGC to a TMD

The Weizsäcker-Williams TMD

$$
\begin{aligned}
\mathcal{F}_{g g}^{(3)}\left(x, k_{\perp}\right) & \propto \int d^{4} z \delta\left(z^{+}\right) e^{i x(P \cdot z)+i\left(k_{\perp} \cdot z_{\perp}\right)}\langle P| \operatorname{Tr}\left[F^{i-}\left(\frac{z}{2}\right) \mathcal{U}^{[+] \dagger} F^{i-}\left(-\frac{z}{2}\right) \mathcal{U}^{[+]}\right]|P\rangle \\
& \rightarrow \int d z_{\perp} e^{i\left(k_{\perp} \cdot z_{\perp}\right)}\langle P| \operatorname{Tr}\left[\left(\partial^{i} U_{\frac{z}{2}}\right) U_{-\frac{z}{2}}^{\dagger}\left(\partial^{i} U_{-\frac{z}{2}}\right) U_{\frac{z}{2}}^{\dagger}\right]|P\rangle
\end{aligned}
$$

Inclusive low x cross section

Inclusive low x cross section $=$ TMD cross section

 [Altinoluk, RB, Kotko], [Altinoluk, RB], [RB, Mehtar-Tani]

$$
\begin{aligned}
& \sigma=\mathcal{H}_{2}^{i j}\left(k_{\perp}\right) \otimes\langle P| F^{-i} W F^{-j} W|P\rangle \\
& +\mathcal{H}_{3}^{i j k}\left(k_{\perp}, k_{1 \perp}\right) \otimes\langle P| F^{-i} W g_{s} F^{-j} W F^{-k} W|P\rangle \\
& +\mathcal{H}_{4}^{i j k}\left(k_{\perp}, k_{1 \perp}, k_{1 \perp}^{\prime}\right) \otimes\langle P| F^{-i} W g_{s} F^{-j} W g_{s} F^{-k} W F^{-l} W|P\rangle
\end{aligned}
$$

Exclusive low x amplitude $=$ GTMD amplitude [Altinoluk, RB]

$\mathcal{H}^{i j}\left(k_{1 \perp}, k_{2 \perp}\right) \otimes\left\langle P^{\prime}\right| F^{-i} W F^{-j} W|P\rangle$

Every exclusive low x process probes a Wigner distribution!

Dijet electro- or photoproduction

$$
\begin{aligned}
& \text { Weizsäcker-Williams TMD } \\
& T_{R_{0}}^{R_{0}}=1, U^{R_{1}}=U, U^{R_{2}}=U^{\dagger}
\end{aligned}
$$

$\mathcal{F}_{g g}^{(3)}\left(x \sim 0, k_{\perp}\right) \propto \int d^{2} z_{\perp} e^{-i\left(k_{\perp} \cdot z_{\perp}\right)}\langle P| \operatorname{Tr}\left(\partial^{i} U_{\frac{z}{2}}^{\dagger}\right) U_{\frac{z}{2}}\left(\partial^{i} U_{-\frac{z}{2}}^{\dagger}\right) U_{-\frac{z}{2}}|P\rangle$

Jet+photon production in pA collisions

$$
\begin{gathered}
\text { Dipole TMD } \\
T^{R_{0}}=1, U^{R_{1}}=U, U^{R_{2}}=1
\end{gathered}
$$

$$
\mathcal{F}_{q g}^{(1)}\left(x \sim 0, k_{\perp}\right) \propto \int d^{2} z_{\perp} e^{-i\left(k_{\perp} \cdot z_{\perp}\right)}\langle P| \operatorname{tr}\left(\partial^{i} U_{\frac{z}{2}}\right)\left(\partial^{i} U_{-\frac{z}{2}}^{\dagger}\right)|P\rangle
$$

0000000000

 0000000
Forward dijet production in pA collisions

0000000000

Forward dijet production in pA collisions

Forward dijet production in pA collisions

The dilute limit

The dilute limit in terms of TMD distributions

Two kinds of multiple scattering effects: higher genuine twists and higher kinematic twists

Genuine saturation effects at the EIC

Probing genuine saturation at the EIC

"Saturation" as the enhancement of genuine higher twists Large gluon occupancy $\Rightarrow g_{s} F \sim 1$

$$
\begin{aligned}
& g_{s}^{2} \int d^{4} b_{1} d^{4} b_{2} d^{4} b^{\prime} \delta\left(b_{1}^{-}\right) \delta\left(b_{2}^{-}\right) \delta\left(b^{\prime-}\right) e^{i\left(k_{1} \cdot b_{1}\right)+i\left(k_{2} \cdot b_{2}\right)-i\left(k \cdot b^{\prime}\right)} \\
& \times \frac{\langle P| F^{i-}\left(b_{1}\right) \mathcal{U}_{b_{1}, b_{2}}^{[\pm]} g_{s} F^{j-}\left(b_{2}\right) \mathcal{U}_{b_{2}, b^{\prime}}^{[\pm]} F^{k-}\left(b^{\prime}\right) \mathcal{U}_{b^{\prime}, b_{1}}^{[\pm]}|P\rangle}{\langle P \mid P\rangle}
\end{aligned}
$$

For dense targets, the Wandzura-Wilczek approximation should be less valid

Probing genuine saturation at the EIC

Genuine saturation effects at the EIC Back-to-back forward dijet/dihadron production

CGC in the correlation limit $=$ leading twist TMD factorization
$=$ leading power 1-body contribution

Probing genuine saturation at the EIC

Back-to-back forward dijet/dihadron production

Even at leading power of k_{\perp} / Q, the genuine higher twist term contributes thanks to the loop transverse momentum

$$
\int d^{2} \ell_{\perp} / Q^{2}(\ldots) \rightarrow Q_{s}^{2} / Q^{2} ?
$$

The discrepancy between correlated CGC or TMD and observation will be due to genuine saturation
Credits to [Mäntysaari,Müller,Salazar,Schenke] for their numerical observation

Deeply Virtual Meson Production

DVMP, the Pomeron and the Odderon

Exclusive low x cross section

Exclusive amplitudes at the EIC $=$ GTMD amplitude [Altinoluk, RB], [RB, Mehtar-Tani]

$$
\begin{aligned}
& \left\langle P^{\prime}, S^{\prime}\right| \operatorname{Tr}\left(U_{x_{1}} U_{x_{2}}^{\dagger}\right)-N_{c}|P, S\rangle \\
& =\frac{\alpha_{s} \bar{P} \bar{P}^{-}}{M} e^{-i \boldsymbol{\Delta} \cdot\left(\frac{x_{1}+x_{2}}{2}\right)} \delta\left(\Delta^{-}\right) \int \frac{d^{2} \boldsymbol{k}}{\boldsymbol{k}^{2}-\frac{\Delta^{2}}{4}} \\
& \times\left[e^{-i(\boldsymbol{k} \cdot \boldsymbol{r})}-\frac{1}{2}\left(e^{i\left(\Delta \cdot \frac{r}{2}\right)}+e^{-i\left(\Delta \cdot \frac{r}{2}\right)}\right)+\frac{(k \cdot r)}{(\boldsymbol{\Delta} \cdot r)}\left(e^{i\left(\Delta \cdot \frac{r}{2}\right)}-e^{-i\left(\Delta \cdot \frac{r}{2}\right)}\right)\right] \\
& \times \bar{u}_{P^{\prime}, S^{\prime}}\left[F_{1,1}^{g}+i \frac{\sigma^{i-}}{\bar{P}-}\left(\boldsymbol{k}^{i} F_{1,2}^{g}+\boldsymbol{\Delta}^{i} F_{1,3}^{g}\right)+i \frac{\sigma^{i j} \boldsymbol{k}^{i} \Delta^{j}}{M^{2}} F_{1,4}^{g}\right] U_{P, S}
\end{aligned}
$$

Every exclusive low x process will probe a Wigner distribution!

Gluon GTMDs

The dipole-type gluon GTMDs

$$
\begin{aligned}
& \left\langle P^{\prime}, S^{\prime}\right| \operatorname{Tr}\left(U_{x_{1}} U_{x_{2}}^{\dagger}\right)-N_{c}|P, S\rangle \\
& \left.=\frac{\alpha_{s} \bar{P}^{-}}{M} e^{-i \boldsymbol{\Delta} \cdot\left(\frac{x_{1}+x_{2}}{2}\right.}\right) \delta\left(\Delta^{-}\right) \int \frac{d^{2} \boldsymbol{k}}{\boldsymbol{k}^{2}-\frac{\Delta^{2}}{4}} \\
& \times e^{-i\left(\boldsymbol{k} \cdot\left(x_{1}-x_{2}\right)\right)} \bar{u}_{P^{\prime}, S^{\prime}}\left[F_{1,1}^{g}+i \frac{\sigma^{i-}}{\bar{P}^{-}}\left(\boldsymbol{k}^{i} F_{1,2}^{g}+\boldsymbol{\Delta}^{i} F_{1,3}^{g}\right)\right] u_{P, S}
\end{aligned}
$$

The C parity of the process selects the $k \leftrightarrow-k$ symmetry of the GTMDs

$$
\begin{aligned}
& F_{1,(1,3)}^{g}=f_{1,(1,3)}\left(x, \xi, \boldsymbol{k}^{2},|\boldsymbol{k} \cdot \boldsymbol{\Delta}|, \boldsymbol{\Delta}^{2}\right)+i \frac{(\boldsymbol{k} \cdot \boldsymbol{\Delta})}{M^{2}} g_{1,(1,3)}\left(x, \xi, \boldsymbol{k}^{2},|\boldsymbol{k} \cdot \boldsymbol{\Delta}|, \boldsymbol{\Delta}^{2}\right) \\
& F_{1,2}^{g}=\frac{(\boldsymbol{k} \cdot \boldsymbol{\Delta})}{M^{2}} f_{1,2}\left(x, \xi, \boldsymbol{k}^{2},|\boldsymbol{k} \cdot \boldsymbol{\Delta}|, \boldsymbol{\Delta}^{2}\right)+i g_{1,2}\left(x, \xi, \boldsymbol{k}^{2},|\boldsymbol{k} \cdot \boldsymbol{\Delta}|, \boldsymbol{\Delta}^{2}\right)
\end{aligned}
$$

DVMP and the Pomeron(s)

Pomeron exchange: C odd meson production

$$
\frac{1}{2}\left[\operatorname{Tr}\left(U_{b+\frac{r}{2}} U_{b-\frac{r}{2}}^{\dagger}\right)+\operatorname{Tr}\left(U_{b-\frac{r}{2}} U_{b+\frac{r}{2}}^{\dagger}\right)\right]-N_{c}
$$

In the forward limit, involves the unpolarized TMD

$$
\left(\bar{u}_{P^{\prime}, S^{\prime}} \gamma^{+} u_{P, S}\right) \times f\left(x, \boldsymbol{k}^{2}\right)
$$

DVMP and the Odderon(s)

Odderon exchange: C even meson production

$$
\frac{1}{2}\left[\operatorname{Tr}\left(U_{b+\frac{r}{2}} U_{b-\frac{r}{2}}^{\dagger}\right)-\operatorname{Tr}\left(U_{b-\frac{r}{2}} U_{b+\frac{r}{2}}^{\dagger}\right)\right]
$$

In the forward limit, involves the Sivers TMD

$$
\left(\bar{u}_{P^{\prime}, S^{\prime}} \sigma^{+j} u_{P, S}\right) x f_{1 T}^{\perp}\left(x, \boldsymbol{k}^{2}\right)
$$

Probing the Sivers function

Thanks to the Odderon/GTMD equivalence, the cross section for exclusive π^{0} electroproduction at small x and small t with unpolarized lepton and proton beams is a direct probe for the gluon Sivers function

$$
\begin{aligned}
\frac{d \sigma}{d \xi d Q^{2} d|t|} & \simeq(2 \pi)^{3} \frac{\alpha_{\mathrm{em}}^{2} \alpha_{s}^{2} f_{\pi}^{2}}{8 \xi N_{c} M^{2} Q^{2}}\left(1-y+\frac{y^{2}}{2}\right) \\
& \times\left[\int_{0}^{1} d z \frac{\phi_{\pi}(z)}{z \bar{z} Q^{2}} \int d k^{2} \frac{\boldsymbol{k}^{2}}{\boldsymbol{k}^{2}+z \bar{z} Q^{2}} x f_{1}^{\perp}\left(x, \boldsymbol{k}^{2}\right)\right]^{2}
\end{aligned}
$$

We can thus understand the gluonic content of the transversely polarized protons without polarizing the proton beam.
[RB, Hatta, Szymanowski, Wallon]

Publications as a CFNS postdoc

- Altinoluk, RB, Marquet, Taels, TMD factorization for dijets + photon production from the dilute-dense CGC framework, JHEP 1907 (2019) 079
- Altinoluk, RB, Kotko, Interplay of the CGC and TMD frameworks to all orders in kinematic twist, JHEP 1905 (2019) 156
- Altinoluk, RB, Low x physics as an infinite twist (G)TMD framework: unravelling the origins of saturation, JHEP 1910 (2019) 208
- RB, Hatta, Yuan, Proton Spin Structure at Small-x, Phys. Lett. B797 (2019) 134817
- RB, Grabovsky, Szymanowski, Wallon, Towards a complete next-to-logarithmic description of forward exclusive diffractive dijet electroproduction at HERA: real corrections, Phys.Rev. D100 (2019) no.7, 074020
- Altinoluk, RB, Marquet, Taels, Gluon TMDs from Forward pA Collisions in the CGC, Acta Phys.Polon. B50 (2019) 969

Presentations given as a CFNS postdoc

- Probing Nucleons and Nuclei in High Energy Collisions, INT Seattle
- Seminar in BNL
- Inaugural Symposium and the first review of the CFNS, Stony Brook
- XXV Cracow Epiphany Conference, Krakow (Poland)
- Initial Stages 2019 Plenary talk, New York
- Quarkonia as tools, Aussois (France)
- Seminar in JLab
- EIC User Group Meeting Paris (France)
- Low x 2019, Nicosia (Cyprus)
- ISMD 2019, Santa Fe (NM)
- POETIC 2019, Berkeley (CA)
- Seminar in the National Centre for Nuclear Research (NCBJ), Warsaw (Poland)
- Resummation, Evolution, Factorization (REF2019), Pavia (Italy)
- Seminar in Jagiellonian University, Krakow (Poland)

Backup

GTMD

Parametrization and coupling to the target hadron

$$
\begin{aligned}
& \int d^{4} v \delta\left(v^{-}\right) e^{i \times \bar{P}^{-} v^{+}-i(k \cdot v)}\left\langle P^{\prime} S^{\prime} \left\lvert\, \operatorname{Tr}\left[F^{i-}\left(-\frac{v}{2}\right) \mathcal{U}_{\frac{2}{2},-\frac{v}{2}}^{[+]} F^{i-}\left(\frac{v}{2}\right) \mathcal{U}_{\left.-\frac{v}{2}, \frac{1}{2}\right]}^{[-]}\right] P S\right.\right\rangle \\
& =(2 \pi)^{3} \frac{\bar{P}^{-}}{2 M} \bar{u}_{P^{\prime} S^{\prime}}\left[F_{1,1}^{g}+i \frac{\sigma^{i-}}{\bar{P}^{-}}\left(k^{i} F_{1,2}^{g}+\Delta^{i} F_{1,3}^{g}\right)+i \frac{\sigma^{i j} k^{i} \Delta^{j}}{M^{2}} F_{1,4}^{g}\right] \text { UPS }
\end{aligned}
$$

Operator product expansion (OPE)

- Moderate \times OPE: factorization

$$
\mathcal{O}(z) \rightarrow \sum_{n} C_{n}(z, \mu) \mathcal{O}_{n}(\mu)
$$

- Operators are ordered in twists (dimension - spin)
- Divergences in C_{n} are canceled via renormalization of \mathcal{O}_{n}
- Easy task: resumming powers of s and logarithms of Q^{2}. Difficulty: including twist corrections and logarithms of s
- Low x OPE:

$$
\mathcal{O}(z) \rightarrow C_{0}(z, Y) \mathcal{O}_{0}(Y)+\alpha_{s} C_{1}(z, Y) \mathcal{O}_{1}(Y)+\ldots
$$

- Operators are sorted by representations of $\operatorname{SU}\left(N_{C}\right)$, order by order in α_{s}
- Built order by order in α_{s}. The spurious pole in $C_{n}(z, Y)$ is canceled via the B/JIMWLK RGE of $\mathcal{O}_{n-1}(Y)$
- Easy task: resumming twists and logarithms of s. Difficulty: including subeikonal corrections and logarithms of Q^{2}

Matching shockwave amplitudes and TMD amplitudes

Small dipole "correlation" expansion

Taylor expansion of the Wilson line operators

$$
U_{\boldsymbol{b}+\frac{r}{2}}^{R_{1}} T^{R_{0}} U_{\boldsymbol{b}-\frac{\boldsymbol{r}}{2}}^{R_{2}}-U_{\boldsymbol{b}}^{R_{1}} T^{R_{0}} U_{\boldsymbol{b}}^{R_{2}}=\frac{\boldsymbol{r}^{i}}{2}\left[\left(\partial^{i} U_{\boldsymbol{b}}^{R_{1}}\right) T^{R_{0}} U_{\boldsymbol{b}}^{R_{2}}-U_{\boldsymbol{b}}^{R_{1}} T^{R_{0}}\left(\partial^{i} U_{\boldsymbol{b}}^{R_{2}}\right)\right]+O\left(\boldsymbol{r}^{2}\right)
$$

allows for a match at leading twist

$$
\begin{aligned}
d \sigma & =\mathcal{H}(b, r) \otimes\left[U_{\boldsymbol{b}+\frac{r}{2}}^{R_{1}} T^{R_{0}} U_{\boldsymbol{b}-\frac{r}{2}}^{R_{2}}-U_{\boldsymbol{b}}^{R_{1}} T^{R_{0}} U_{\boldsymbol{b}}^{R_{2}}\right] \\
& \times \mathcal{H}^{*}\left(b^{\prime}, r^{\prime}\right) \otimes\left[U_{\boldsymbol{b}^{\prime}-\frac{r^{\prime}}{2}}^{R_{2} \dagger} T^{R_{0} \dagger} U_{\boldsymbol{b}^{\prime}+\frac{r^{\prime}}{2}}^{R_{1} \dagger}-U_{\boldsymbol{b}^{\prime}}^{R_{2} \dagger} T^{R_{0} \dagger} U_{\boldsymbol{b}^{\prime}}^{R_{1} \dagger}\right] \\
& \rightarrow d \sigma_{k=0}^{(i)} \otimes \Phi^{(i)}(x, \boldsymbol{k})+O\left(r^{2}\right)
\end{aligned}
$$

How to extend this to higher twist corrections?

Matching shockwave amplitudes and TMD amplitudes

Power expansion for TMD observables: dealing with powers of k_{\perp} / Q

Consider (hypothetical) hard subamplitudes with non-zero transverse momenta in the t channel. The amplitude would read:

$$
\begin{aligned}
& \mathcal{H}_{1}^{i}(k) \otimes \int d^{2} x_{1} e^{-i\left(k \cdot x_{1}\right)}\left[\pm \infty, x_{1}\right] F^{i-}\left(x_{1}\right)\left[x_{1}, \pm \infty\right] \\
+ & \mathcal{H}_{2}^{i j}\left(k_{1}, k_{2}\right) \otimes \int d^{2} x_{1} d^{2} x_{2} e^{-i\left(k_{1} \cdot x_{1}\right)-i\left(k_{2} \cdot x_{2}\right)}\left[\pm \infty, x_{1}\right] F^{i-}\left(x_{1}\right)\left[x_{1}, x_{2}\right] F^{j-}\left(x_{2}\right)\left[x_{2}, \pm \infty\right] \\
+ & \ldots \\
= & \mathcal{H}_{1}^{i}(k) \otimes \mathcal{O}_{1}^{i}(\boldsymbol{k})+\mathcal{H}_{2}^{i j}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \otimes \mathcal{O}_{2}^{i j}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)+\ldots
\end{aligned}
$$

Matching shockwave amplitudes and TMD amplitudes

Power expansion for TMD amplitudes:
dealing with powers of k_{\perp} / Q
Leading twist amplitude

$$
\mathcal{A}_{L T}=\mathcal{H}_{1}^{i}(\mathbf{0}) \otimes \mathcal{O}_{1}^{i}(\boldsymbol{k})
$$

Next-to-leading twist amplitude

$$
\mathcal{A}_{N L T}=\boldsymbol{k} \cdot\left(\partial_{\boldsymbol{k}} \mathcal{H}_{1}^{i}\right)(\mathbf{0}) \otimes \mathcal{O}_{1}^{i}(\boldsymbol{k})+\mathcal{H}_{2}^{i j}(\mathbf{0}, \mathbf{0}) \otimes \mathcal{O}_{2}^{i j}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)
$$

First term: kinematic twist correction, second term: genuine twist corrections

The so-called dilute limit in terms of TMD distributions

Small x Improved TMD framework (ITMD)

A hybrid framework with off-shell gluons from the target [Kotko, Kutak, Marquet, Petreska, Sapeta, Van Hameren]

- QCD gauge invariance for multileg amplitudes with an off-shell leg restored with target counterterms [Kotko]
- TMD gauge links are built from the [Bomhof, Mulders, Pijlman] techniques
- Eventually, looks like BFKL, but with distinct TMD distributions for different color flow structures. Interpolates between the TMD regime $\left|k_{\perp}\right| \ll Q$ and the BFKL regime $\left|k_{\perp}\right| \sim Q$

Small x frameworks

QCD shockwaves $k_{\perp}, Q \ll s$

$$
\sum_{i} \mathcal{H}_{2}^{(i)}(\boldsymbol{k}) \otimes \mathcal{F}_{2}^{(i)}(\boldsymbol{k})+\mathcal{H}_{3}^{(i)}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \otimes \mathcal{F}_{3}^{(i)}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)+\mathcal{H}_{4}^{(i)}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right) \otimes \mathcal{F}_{4}^{(i)}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}, \boldsymbol{k}_{3}\right)
$$

TMD at small $x \quad k_{\perp} \ll Q \ll s$

$$
\sum_{i} \mathcal{H}_{2}^{(i)}(\mathbf{0}) \otimes \mathcal{F}_{2}^{(i)}(\boldsymbol{k})
$$

BFKL $\quad k_{\perp} \lesssim Q \ll s$

$$
\mathcal{H}_{2}(\boldsymbol{k}) \otimes \mathcal{F}_{2}(\boldsymbol{k})
$$

Small x Improved TMD $\quad k_{\perp}, Q \ll s$?

$$
\sum_{i} \mathcal{H}_{2}^{(i)}(\boldsymbol{k}) \otimes \mathcal{F}_{2}^{(i)}(\boldsymbol{k})
$$

Inclusive low x cross section

First, take the Wandzura-Wilczek approximation [Altinoluk, RB, Kotko]: matches ITMD cross sections

$$
\begin{aligned}
& \sigma=\mathcal{H}_{2}^{i j}\left(k_{\perp}\right) \otimes\langle P| F^{-i} W F^{-j} W|P\rangle \\
& +\mathcal{H}_{3}^{i j k}\left(k_{\perp}, k_{1 \perp}\right) \otimes\langle P| F^{-i} W g_{s} F^{-j} W F^{-k} W|P\rangle \\
& +\mathcal{H}_{4}^{i k l}\left(k_{\perp}, k_{1 \perp}, k_{1 \perp}^{\prime}\right) \otimes\langle P| F^{-i} W g_{s} F^{-j} W g_{5} F^{-k} W F^{-1} W|P\rangle
\end{aligned}
$$

WW approximation at large k_{t} : the BFKL limit

- At large transverse momentum transfer, no multiple scattering from the gauge links

TMD with staple gauge links
$\int \frac{d^{2} \boldsymbol{k}}{(2 \pi)^{2}} e^{-i(k \cdot x)} \int d x^{+}\langle P| F^{i-}(x)\left[x^{+}, \pm \infty\right]_{x}\left[\pm \infty, 0^{+}\right]_{0} F^{j-}(0)\left[0^{+}, \pm \infty\right]_{0}\left[\pm \infty, x^{+}\right]_{x}|P\rangle$
Large $k_{\perp} \sim Q \Rightarrow$ small transverse distance x_{\perp}

$$
\left[x^{+}, \pm \infty\right]_{x}\left[\pm \infty, y^{+}\right]_{0} \sim\left[x^{+}, y^{+}\right]_{x \sim 0} .
$$

All TMD distributions shrink into the unintegrated PDF

$$
\left.\int \frac{d^{2} \boldsymbol{k}}{(2 \pi)^{2}} e^{-i(\boldsymbol{k} \cdot x)} \int d x^{+}\langle P| F^{i-}(x)\left[x^{+}, 0^{+}\right]_{0} F^{j-}(0)\left[0^{+}, x^{+}\right]_{0}|P\rangle\right|_{x^{-}=0}
$$

and one recovers a BFKL cross section.

BFKL distributions and genuine twist corrections

Unintegrated PDF $=$ 2-Reggeon matrix element

$$
\left.\int d^{2} \boldsymbol{x} e^{-i(\boldsymbol{k} \cdot x)} \int d x^{+}\langle P| F^{i-}(x)\left[x^{+}, 0^{+}\right]_{0} F^{j-}(0)\left[0^{+}, x^{+}\right]_{0}|P\rangle\right|_{x^{-}=0}
$$

Integration by parts
$\int d x^{+} \int d^{2} \boldsymbol{x} e^{-i(\boldsymbol{k} \cdot x)} \boldsymbol{k}^{i} \boldsymbol{k}^{j}\langle P|\left[-\infty, x^{+}\right]_{0} A^{-}(x)\left[x^{+},+\infty\right]_{0}\left[+\infty, 0^{+}\right]_{0} A^{-}(0)\left[0^{+},-\infty\right]_{0}|P\rangle$
We recognize the so-called nonsense polarizations in axial gauge. We could define a Reggeon operator:

$$
R(x)=\int d x^{+}\left[-\infty, x^{+}\right]_{0} A^{-}(x)\left[x^{+},+\infty\right]_{0}
$$

and rewrite the unintegrated PDF as

$$
\int \frac{d^{2} \boldsymbol{k}}{(2 \pi)^{2}} e^{-i(\boldsymbol{k} \cdot x)} \frac{\boldsymbol{k}^{i} \boldsymbol{k}^{j}}{\boldsymbol{k}^{2}} \boldsymbol{k}^{2}\langle P| R(x) R^{\dagger}(0)|P\rangle
$$

BFKL distributions and genuine twist corrections

What is neglected in BFKL: 3- and 4-Reggeon matrix elements.

$$
\langle P| R R|P\rangle, \quad\langle P| R\left(g_{s} R\right) R|P\rangle, \quad\langle P| R\left(g_{s} R\right)\left(g_{s} R\right) R|P\rangle
$$

They are not perturbatively suppressed.
Suppression $=$ WW approximation (unquantifiable)

Kinematic saturation

"Saturation" from a TMD gauge link

Expected at small k_{\perp} / Q

Kinematic saturation

"Saturation" from a TMD gauge link

Link length $\sim 1 /\left|k_{\perp}\right|$, hence effect suppressed at large k_{\perp}

[Marquet, Petreska, Roiesnel ; Marquet, Roiesnel, Taels]
"Saturation" as an enhancement of genuine twists
Large gluon occupancy $\Rightarrow g_{s} F \sim 1$

$$
\begin{aligned}
& g_{s}^{2} \int d^{4} b_{1} d^{4} b_{2} d^{4} b^{\prime} \delta\left(b_{1}^{-}\right) \delta\left(b_{2}^{-}\right) \delta\left(b^{\prime-}\right) e^{i\left(k_{1} \cdot b_{1}\right)+i\left(k_{2} \cdot b_{2}\right)-i\left(k \cdot b^{\prime}\right)} \\
& \times \frac{\langle P| F^{i-}\left(b_{1}\right) \mathcal{U}_{b_{1}, b_{2}}^{[\pm]} g_{5} F^{j-}\left(b_{2}\right) \mathcal{U}_{b_{2}, b^{\prime}}^{[\pm]} F^{k-}\left(b^{\prime}\right) \mathcal{U}_{b^{\prime}, b_{1}}^{[\pm]}|P\rangle}{\langle P \mid P\rangle}
\end{aligned}
$$

k_{\perp} / Q-suppressed: expected at large k_{\perp} ?

Matching shockwave amplitudes and TMD amplitudes

Match without an expansion

Trick: rewrite operators in terms of their derivatives

$$
U_{\boldsymbol{b}+\bar{z} \boldsymbol{r}}^{R_{1}}-U_{\boldsymbol{b}}^{R_{1}}=-i r_{\perp}^{\mu} \int \frac{d^{2} \boldsymbol{k}_{1}}{(2 \pi)^{2}} \int d^{2} \boldsymbol{b}_{1} e^{-i \boldsymbol{k}_{1} \cdot\left(\boldsymbol{b}_{1}-\boldsymbol{b}\right)} \frac{e^{i \overline{\boldsymbol{z}}\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}\right)}-1}{\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}\right)}\left(\partial_{\mu} U_{\boldsymbol{b}}^{R_{1}}\right)
$$

Rewrite the amplitude

$$
\begin{aligned}
& \mathcal{A}=(2 \pi) \delta\left(p_{1}^{+}+p_{2}^{+}-p_{0}^{+}\right) \int d^{2} \boldsymbol{b} d^{2} \boldsymbol{r} e^{-i(\boldsymbol{q} \cdot \boldsymbol{r})-i(\boldsymbol{k} \cdot \boldsymbol{b})} \mathcal{H}(\boldsymbol{r}) \\
& \times\left[\left(U_{b+\dot{z} r}^{R_{1}}-U_{b}^{R_{1}}\right) T^{R_{0}}\left(U_{b-z r}^{R_{2}}-U_{b}^{R_{2}}\right)+\left(U_{b+\dot{z} r}^{R_{1}}-U_{b}^{R_{1}}\right) T^{R_{0}} U_{b}^{R_{2}}+U_{b}^{R_{1}} T^{R_{0}}\left(U_{b-z r}^{R_{2}}-U_{b}^{R_{2}}\right)\right]
\end{aligned}
$$

genuine twist
kinematic + genuine twists
Extracting genuine twists: Taylor, IbP, resummation.

General $1 \rightarrow 2$ process in the shockwave framework

Splitting of a particle into two particles in the external shockwave field

$$
\begin{aligned}
\mathcal{A} & =(2 \pi) \delta\left(p_{1}^{+}+p_{2}^{+}-p_{0}^{+}\right) \int d^{2} \boldsymbol{b} d^{2} \boldsymbol{r} \mathrm{e}^{-i(\boldsymbol{q} \cdot \boldsymbol{r})-i(\boldsymbol{k} \cdot \boldsymbol{b})} \mathcal{H}(\boldsymbol{r}) \\
& \times\left[\left(U_{b+\bar{z} \boldsymbol{r}}^{R_{1}} T^{R_{0}} U_{b-z r}^{R_{2}}\right)-\left(U_{b}^{R_{1}} T^{R_{0}} U_{b}^{R_{2}}\right)\right]
\end{aligned}
$$

Matching shockwave amplitudes and TMD amplitudes

[Altinoluk, RB], [RB, Mehtar-Tani]

We can cast the shockwave amplitude into a 1-body amplitude

$$
\begin{aligned}
& \mathcal{A}_{1}=(2 \pi) \delta\left(p_{1}^{+}+p_{2}^{+}-p_{0}^{+}\right) \int d^{2} \boldsymbol{b} e^{-i(\boldsymbol{k} \cdot \boldsymbol{b})}(-i) \int d^{2} \boldsymbol{r} e^{-i(\boldsymbol{q} \cdot \boldsymbol{r})} r_{\perp}^{\alpha} \mathcal{H}(\boldsymbol{r}) \\
& \times\left.\times\left(\frac{e^{i \bar{z}(\boldsymbol{k} \cdot \boldsymbol{r})}-1}{(\boldsymbol{k} \cdot \boldsymbol{r})}\right)\left(\partial_{\alpha} U_{\boldsymbol{b}}^{R_{1}}\right) T^{R_{0}} U_{\boldsymbol{b}}^{R_{2}}+\left(\frac{e^{-i z(\boldsymbol{k} \cdot \boldsymbol{r})}-1}{(\boldsymbol{k} \cdot \boldsymbol{r})}\right) U_{\boldsymbol{b}}^{R_{1}} T^{R_{0}}\left(\partial_{\alpha} U_{\boldsymbol{b}}^{R_{2}}\right)\right] \\
& \text { and a 2-body amplitude } \\
& \mathcal{A}_{2}=(2 \pi) \delta\left(p_{1}^{+}+p_{2}^{+}-p_{0}^{+}\right) \int \frac{d^{2} \boldsymbol{k}_{1}}{(2 \pi)^{2}} \frac{d^{2} \boldsymbol{k}_{2}}{(2 \pi)^{2}}(2 \pi)^{2} \delta^{2}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}-\boldsymbol{k}\right) \\
& \times \int d^{2} \boldsymbol{b}_{1} d^{2} \boldsymbol{b}_{2} e^{-i\left(\boldsymbol{k}_{1} \cdot \boldsymbol{b}_{1}\right)-i\left(\boldsymbol{k}_{2} \cdot \boldsymbol{b}_{2}\right)}\left(\partial^{i} U_{\boldsymbol{b}_{1}}^{R_{1}}\right) T^{R_{0}}\left(\partial^{j} U_{\boldsymbol{b}_{2}}^{R_{2}}\right) \\
& \times\left[-\int d^{2} \boldsymbol{r} \boldsymbol{e}^{-i(\boldsymbol{q} \cdot \boldsymbol{r})} \boldsymbol{r}^{i} \boldsymbol{r}^{j} \mathcal{H}(\boldsymbol{r})\left(\frac{e^{-i z(\boldsymbol{k} \cdot \boldsymbol{r})}}{(\boldsymbol{k} \cdot \boldsymbol{r})} \frac{e^{i\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}\right)}-1}{\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}\right)}+\frac{e^{i \bar{z}(\boldsymbol{k} \cdot \boldsymbol{r})}}{(\boldsymbol{k} \cdot \boldsymbol{r})} \frac{e^{-i\left(\boldsymbol{k}_{2} \cdot \boldsymbol{r}\right)}-1}{\left(\boldsymbol{k}_{2} \cdot \boldsymbol{r}\right)}\right)\right]
\end{aligned}
$$

