Center for Frontiers

 in Nuclear Science
My background and plan for CFNS

Mriganka Mouli Mondal
09/18/2019

Work with : Abhay Deshpande

Outline

- My Background : experimental high energy nuclear physics (ALICE@LHC, STAR@RHIC : Texas A\&M, Inst. Of Physics, India \& NISER, India)
- Analysis: SPIN physics, cold QCD at RHIC, jet structure studies @ RHIC
- Detector: Photon Multiplicity Detector, Forward Meson Spectrometer, GEM-detector simulations
- Current experiment attached with
- RHIC: PHENIX forward neutron transverse spin asymmetries
- JLab12: Involvement with CREX/PREX
- Other possibilities under consideration next year
- HERA data analysis for learning about EIC studies,
- Involvement with forward PID detector RHIC+TOF for EIC, and
- Physics simulations (probing spin/gluon density) for EIC

Overarching theme:
 Transverse Momentum of Partons in hadrons

Transverse momentum distribution of partons seems to play an important role in all aspects of QCD

They affect the jet-correlations/properties and single spin asymmetries

I have studied them in p-p, p-A and polarized p-p scattering. In future I look forward to measuring in ep and e-A at Jlab12 and the EIC.

Jet properties in pp and pAu at $\mathrm{V} s=200 \mathrm{GeV}$

(My thesis work from VECC, Kolkata)

$$
\begin{array}{r}
\quad \frac{\left\langle p_{T}^{2}\right\rangle_{\text {pair }}}{2}=\left\langle k_{T}^{2}\right\rangle_{\text {intrinsic }}+\left\langle k_{T}^{2}\right\rangle_{\text {soft }}+\left\langle k_{T}^{2}\right\rangle_{N L O} \\
\text { (used in event generator like PYTHIA) } \quad f\left(k_{T a}\right)=\frac{e^{-k_{T}^{2} /\left\langle k_{T}^{2}\right\rangle}}{\pi\left\langle k_{T}^{2}\right\rangle}
\end{array}
$$

S.S. Adleret al, Phys. Rev. D74, 072002(2006)		
Jet Transverse Momentum :	$\sqrt{\left\langle j_{t}^{2}\right\rangle}=\sqrt{2} \frac{p_{t}^{\text {asso }} p_{t}^{\text {trig }}}{\sqrt{\left(p_{t}^{\text {asso }}\right)^{2}+\left(p_{t}^{\text {trig }}\right)^{2}}} \sigma_{N}{ }^{2} \quad \hat{x}_{h}=\hat{p}_{t}^{\text {asso }} / \hat{p}_{t}^{\text {trig }}$	and $x_{h}=p_{t}^{\text {asso }} / p_{t}^{\text {trig }}$
Effective k_{T} partons	$\sqrt{\left\langle k^{s}{ }_{t}^{2}\right\rangle}=\frac{\left\langle z_{t}\left(k_{t}, x_{h}\right)\right\rangle \sqrt{\left\langle k_{t}^{2}\right\rangle}}{\hat{x}_{h}\left(k_{t}, x_{h}\right)}=\frac{1}{x_{h}} \sqrt{\left\langle p_{o u t}^{2}\right\rangle-\left\langle j_{t y}^{2}\right\rangle\left(1+x_{h}^{2}\right)}$	$p_{\text {out }}=p_{t}^{\text {asso }} \sin \Delta \phi$

$p_{\mathrm{t}}($ trigger $)=6.5-8.5 \mathrm{GeV} / \mathrm{c}$
$\mathrm{p}_{\mathrm{a}}($ associated $)=1.2-1.7 \mathrm{GeV} / \mathrm{c}$

$\left\langle\mathrm{k}_{\mathrm{T}}{ }^{2}\right\rangle: 2.77996+/-0.0337597$ [0.273589, -0.0469066$] \mathrm{h}-\mathrm{h}$
$\left\langle\mathrm{k}_{\mathrm{T}}{ }^{2}\right\rangle: 2.59601+/-0.084435 \quad[0.119595,-0.0175883] \pi^{0}-\mathrm{h}$
\mathbf{k}_{T} measurement of partons from di-hadron M. M Mondal [for STAR Collaboration] Int. J. Mod. Phys. E 20, 1656 (2011)

Transverse Single Spin Asymmetry

(My work at Texas A\&M)
(left-right asymmetry)

$$
p_{\uparrow}+p \rightarrow \pi^{0}+X
$$

\diamond Rising A_{N} with X_{F}
$\diamond A_{N}$ nearly independent of V s
\diamond No evidence of fall in A_{N} with increasing P_{T}

A standard framework : jets is inevitable for proper understanding

TMD - Sivers and Collins effect

D. Sivers, Phys. Rev. D 41, 83 (1990)

Sivers effect : the correlation between the transverse momentum (k_{t}) of the struck quark and the spin (S) and momentum (p) of its parent nucleon
J. C. Collins, Nucl. Phys. B396, 161 (1993)

Collins effect :spin-momentum
correlation in the hadronization process

$$
\mathbf{s}_{\mathbf{q}} \cdot\left(\mathbf{k}_{\mathbf{q}} \times \mathbf{p}_{\mathbf{t}}\right)
$$

Fragmentation, $\Delta \mathrm{D}_{\mathrm{q}}$

need to move beyond inclusive production

- Sivers effect : Full Jets, Direct photons, Drell-Yan
- Collins effect : azimuthal orientation of particles within a jet
- Separating Sivers and Collins effect

Forward ECAL in STAR

Forward Meson Spectrometer (FMS) :

- Pb glass EM calorimeter covering 2.6<ŋ<4.0
- Detect π^{0}, n, direct photons and jet-like events in the kinematic region where transverse spin asymmetries are known to be large
- FMS : A trigger detector : defined for $\pi^{0 / J e t-r i c h, ~ D i-~} \pi^{0 / J e t-r i c h ~ l i k e ~ t r i g g e r s ~}$

A_{N} for different multiplicities of photons in EM-Jots

\& 1-photon events, which include a large π^{0} contribution in this analysis, are similar to 2photon events

૪ Three-photon jet-like events have a clear nonzero asymmetry, but substantially smaller than that for isolated $\pi^{0}{ }^{\prime} \mathrm{s}$
$\diamond A_{N}$ decreases as the event complexity increases (i.e., the "jettiness"
४ A_{N} for \#photons >5 is similar to that for \#photons = 5

Conclusions from TSSA for EM jets
 (Star publication under preparation)

- Jets with isolated π^{0} have large asymmetry
- $\mathbf{A}_{\boldsymbol{N}}$ decreases as the event complexity increases
- Isolated π^{0} asymmetries are smaller when there is a correlated EM-jet at midrapidity
- Both of these dependences raise serious question how much of the large forward $\pi^{0} A_{N}$ comes from $2 \rightarrow 2$ parton scattering

Diffractive Events ??

Forward upgrade for the STAR experiment - necessary to have better understanding
$>$ Roman pots - tagging diffractive events
$>$ FMS upgrade : with Forward pre-shower detector (direct photons) and post-shower detector (Drell-Yan)
$>$ In 2020's STAR plan to have tracking and full calorimetry to detect full jets in forward rapidity
> New analysis: EM-Jet correlations at forward rapidity - small x physics (underway), forward-mid-rapidity correlations - ridge studies

New initiatives since joining CFNS

 (since 09/2019)- PHENIX forward neutron transverse spin asymmetries : how the asymmetries depends on the Center of Mass Energy in p-p collisions
- Why? Motivation? ($p-A$ showed asymmetries for different A)
- Mechanism being understood...
- We provide more data: PHENNIX published 200 GeV : (PRL 120, 022001)
- Measure asymmetry for 62.4 and 500 GeV . x_{F} and p_{T} dependence.
- SBU current activities: CREX/PREX at Jlab
- electron-proton experiment at JLab12 (see details in Ciprian Gal's talk)

Other studies under consideration:

- HERA data analysis: Jets and understanding final states - What we can learn for the EIC?
- SBU's emerging involvement with forward PID detector RICH+TOF for EIC - One of the difficult unsolved problems for the EIC.
- Physics/detector simulations (probing spin/gluon density/jet structure) for EIC

Summary

- My experience spin physics, jets in p-p, p-A scattering at RHIC. In addition experience with work with detectors for ALICE \& RHIC.
- Current activities include PHENIX data analysis and CREX/PERX -- operations
- Exploring new directions: data from HERA and like to get started with EIC detector and simulations

backup

(PRL 120, 022001)

Production cross sections: were successfully explained in terms of one-pion exchange

Asymmetry: an interference between the spinflip π exchange and a non- spin-flip a1-Reggeon exchange was necessary

- observed an unexpectedly strong A dependence in A_{N} of inclusive forward neutron production in polarized $\mathrm{p}-\mathrm{A}$
- a distinctly different behavior of AN was observed in two oppositely trigger-enhanced data sets: ZDC \otimes BBC-tag and ZDC \otimes BBC-veto
- explained by a contribution of EM interactions, which may be sizable for heavy nuclei

Back-to-back angular correlations at RHIC

$2 \rightarrow 1$ (or $2 \rightarrow$ many) process Mono-jet

Kharzeev, Levin, McLerran (NPA748, 627)
Jet Azimuthal Correlation : Suppression
PHENIX, PRL 107, 172301

CGC predicts suppression of the away-side peak. PHENIX observed suppression of the away-side peak in 0-20\% d+Au collisions at (V s $=200 \mathrm{GeV}$)

STAR 2015 data are being analyzed for $\pi^{0}-\pi^{0}$ and EM jet - EM jet azimuthal correlations in $\mathrm{p}+\mathrm{p}, \mathrm{p}+\mathrm{Al}, \mathrm{p}+\mathrm{Au}$ at $\mathrm{V}=200 \mathrm{GeV}$: Ongoing Working on FMS gain uniformity and stability

[^0]
[^0]: Jet-lke azimuthal correlations in $p+p$ and $p+A u$ collisions at forward rapidity with STAR Light Cone 2017 : M. M. Mondal for STAR Collaboration

