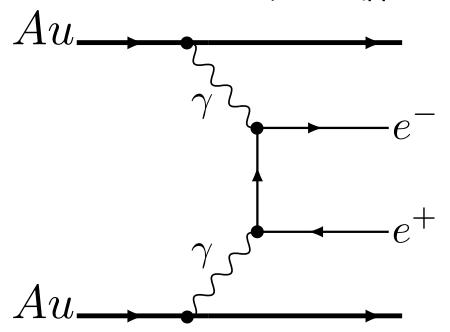


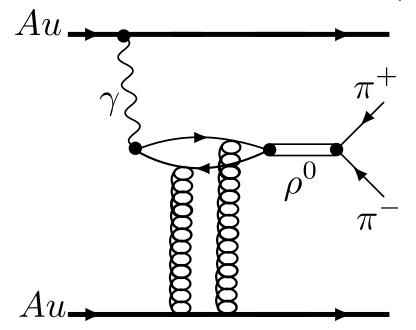
Measurement of the $\gamma\gamma \to e^+e^-$ Process and its Angular Correlations

Daniel Brandenburg

(Shandong University, BNL/CFNS)

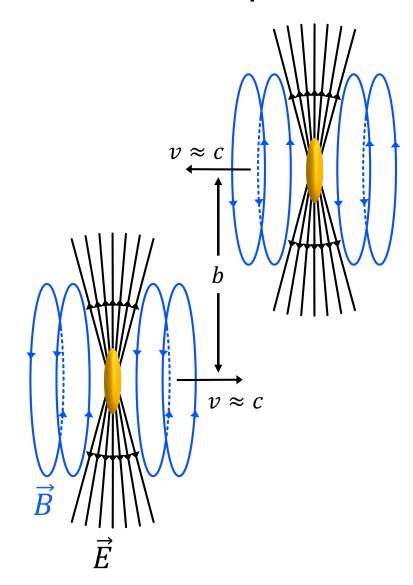
Working with Lijuan Ruan


CFNS Annual Review, December 5-6, 2019



Discoveries in QED and their Application to Nuclear Physics

Part 1: The Breit-Wheeler process $(\gamma \gamma \rightarrow e^+e^-)$


Part 2: Diffractive Photoproduction of the ρ^0 Meson

Discovery of vacuum birefringence through $\gamma\gamma \to e^+e^-$ process provides a new observable for studying the nucleus <u>now and at a future EIC</u>

 \rightarrow New observable that may be sensitive to gluon GTMD / saturation scale

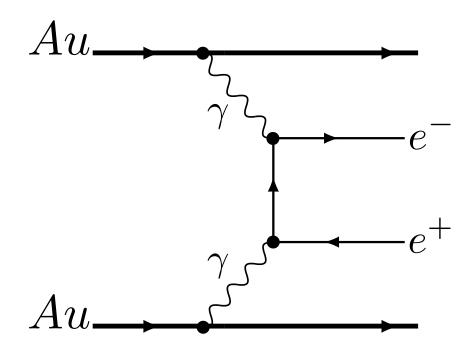
Ultra-Peripheral Collisions

Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic field

Weizäcker-Williams Equivalent Photon Approximation (EPA):

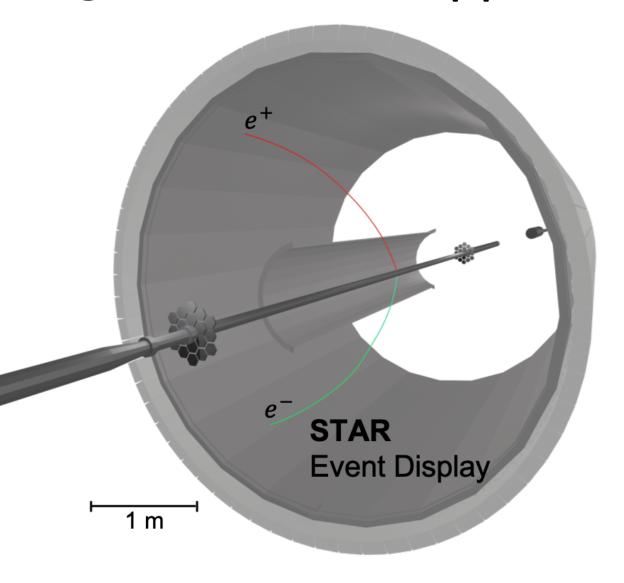
→ In a specific phase space, EM fields can be quantized as a flux of real photons

Weizsäcker, C. F. v. Zeitschrift für Physik 88 (1934): 612

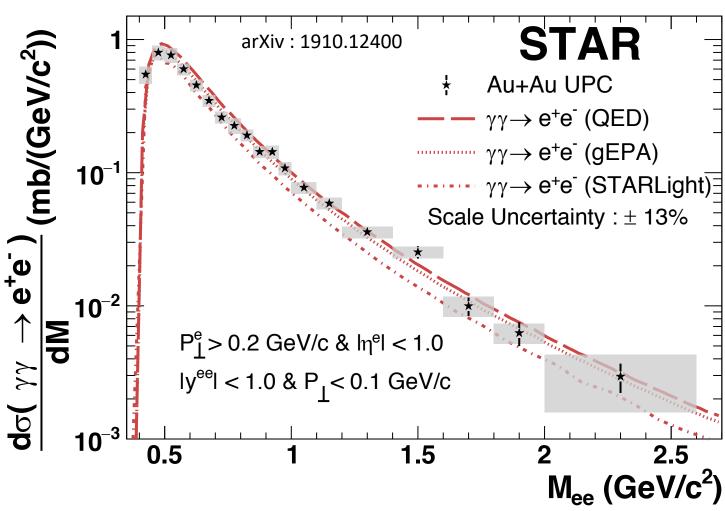

 $Zlpha \approx 1
ightarrow ext{High photon density}$ Magnetic field strength $\overrightarrow{B} \approx 10^{14} - 10^{16} \, \text{T}$ Skokov, V., et. al. Int. J. Mod. Phys. A 24 (2009): 5925–32

Test QED under extreme conditions

$\gamma\gamma \rightarrow e^+e^-$ Process


1934 Breit & Wheeler: "Collision of two Light Quanta"

G. Breit and J. A. Wheeler. Physical Review 46 (1934): 1087


- 1. Identifying $\gamma\gamma \rightarrow e^+e^-$ process in ultra-peripheral heavy-ion collisions
- 2. Ultra-peripheral vs. peripheral
- 3. First Earth-based observation of vacuum birefringence
- 4. Applications & connection to EIC

Signatures of the $\gamma\gamma \rightarrow e^+e^-$ Process

- 1. Exclusive production of e^+e^- pair
- 2. Smooth invariant mass spectra (No vector mesons)
- 3. Individual e^+/e^- preferentially aligned in beam direction
- 4. Production peaked at very low P_{\perp} (pair transverse momentum)

Total $\gamma\gamma \rightarrow e^+e^-$ cross-section in STAR Acceptance

STARLight: S. R. Klein, et. al. *Comput. Phys. Commun.* 212 (2017) 258 gEPA & QED: W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th]

Pure QED 2 \rightarrow 2 scattering : $d\sigma/dM \propto E^{-4} \approx M^{-4}$

No vector meson production \rightarrow Forbidden for real photons with helicity ± 1 (i.e. 0 is forbidden)

 $\sigma(\gamma\gamma \to e^+e^-)$ in STAR Acceptance:

Data : 0.261 ± 0.004 (stat.) \pm 0.013 (sys.) \pm 0.034 (scale) mb

STARLight gEPA QED
0.22 mb 0.26 mb 0.29 mb

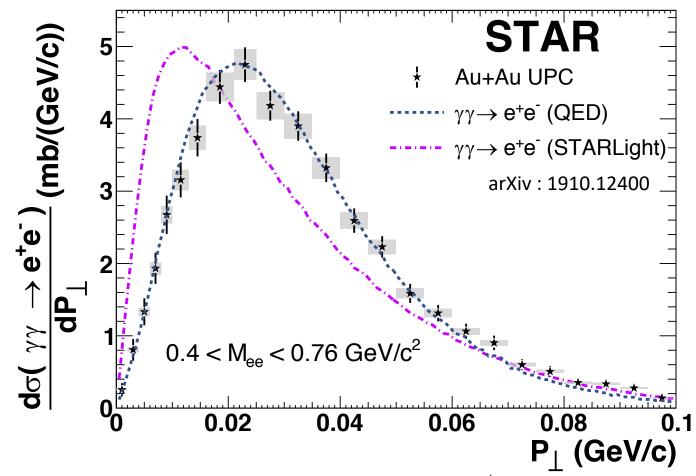
Measurement of total cross section agrees with theory calculations at $\pm 1\sigma$ level

$d\sigma(\gamma\gamma \to e^+e^-)/d\cos\theta'$

 $\gamma\gamma \rightarrow e^+e^-$: Individual e^+/e^- preferentially aligned along beam axis [1]:

$$G(\theta) = 2 + 4\left(1 - \frac{4m^2}{W^2}\right) \frac{\left(1 - \frac{4m^2}{W^2}\right)\sin^2\theta\cos^2\theta + \frac{4m^2}{W^2}}{\left(1 - \left(1 - \frac{4m^2}{W^2}\right)\cos^2\theta\right)^2}$$

- Highly virtual photon interactions should have an isotropic distribution
- \circ Measure θ' , the angle between the e^+ and the beam axis in the pair rest frame.


STAR (dm) Au+Au UPC 0.4 $\gamma\gamma \rightarrow e^+e^- (XnXn) \times 0.88$ Isotropic e⁺e⁻ $0.4 < M_{ee} < 0.76 \text{ GeV/c}^2$ lcos(θ')l

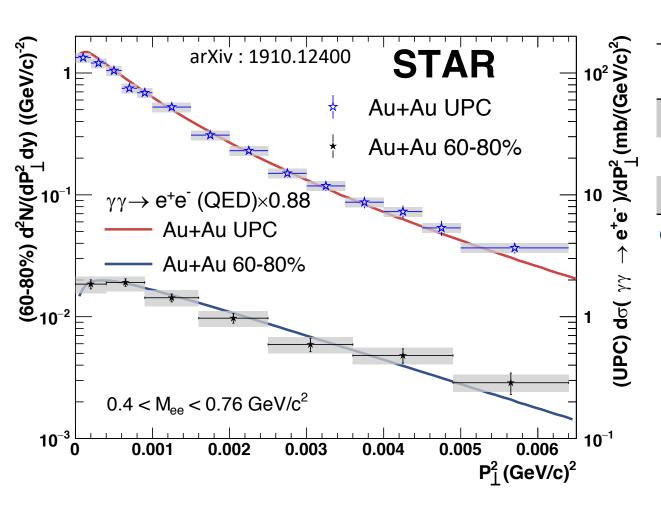
arXiv: 1910.12400

Data are fully consistent with $G(\theta)$ distribution expected for $\gamma\gamma \rightarrow e^+e^-$

[1] S. Brodsky, T. Kinoshita and H. Terazawa, Phys. Rev. **D4**, 1532 (1971) STARLight: S. R. Klein, et. al. Comput. Phys. Commun. 212 (2017) 258

$d\sigma(\gamma\gamma \to e^+e^-)/dP_\perp$

QED and STARLight are scaled to match measured $\sigma(\gamma\gamma \to e^+e^-)$


STARLight: S. R. Klein, et. al. *Comput. Phys. Commun.* 212 (2017) 258 QED: W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th]

 \circ Cross-section peaks at low P_{\perp} , as expected for real photon collisions

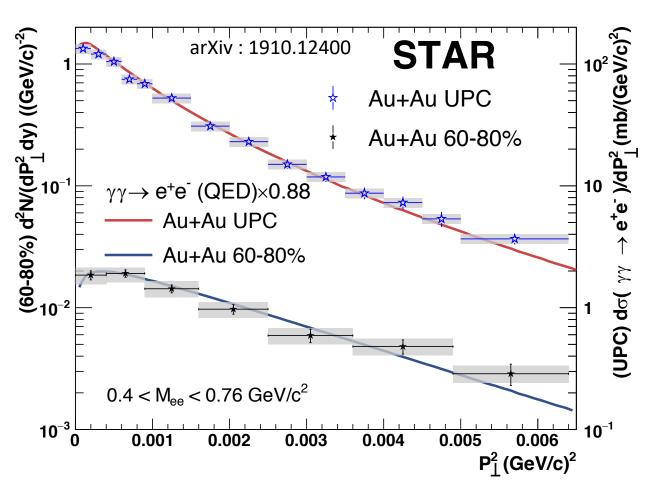
- \circ Data are well described by leading order QED calculation ($\gamma\gamma \to e^+e^-$)
- \circ STARLight predicts significantly lower $\langle P_{\perp} \rangle$ than seen in data
 - \circ STARLight calculations do not have centrality dependent P_1 distribution
- Experimentally investigate impact parameter dependence :
- **→**Compare UPC vs. peripheral collisions

11/05/19 Daniel Brandenburg

$\gamma\gamma \rightarrow e^+e^-$: UPC vs. Peripheral

Characterize difference in spectra	via √	$\langle P_1^2 \rangle$
------------------------------------	-------	-------------------------

$\sqrt{\langle P_{\perp}^2 angle}$ (MeV/c)	UPC Au+Au	60-80% Au+Au	
Measured	38.1 ± 0.9	50.9 ± 2.5	
QED	37.6	48.5	
b range (fm)	≈ 20	≈ 11.5 <i>−</i> 13.5	


○ Leading order QED calculation of $\gamma\gamma \rightarrow e^+e^-$ describes both spectra (±1 σ)

$$\gamma\gamma \rightarrow e^+e^-$$
: UPC vs. Peripheral

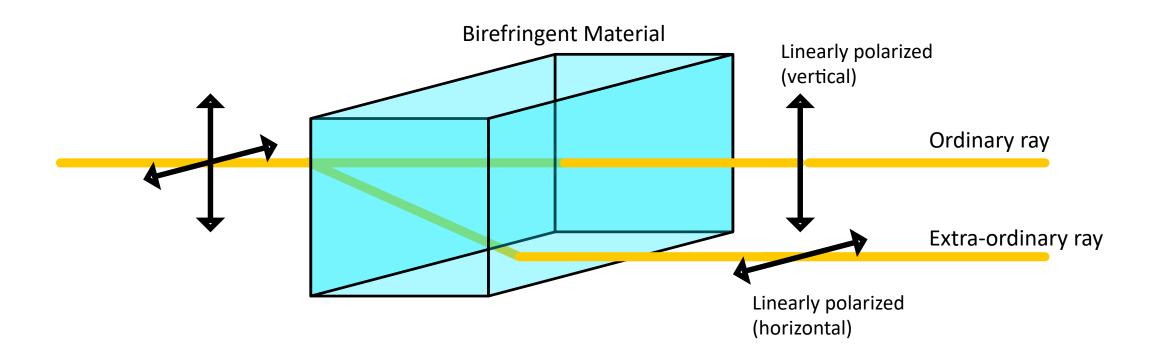
[1] STAR, Phys. Rev. Lett. 121 (2018) 132301

[2] S. R. Klein, et. al, Phys. Rev. Lett. 122, (2019), 132301

[3] ATLAS Phys. Rev. Lett. 121 (2018), 212301

Characterize difference in spectra via $\sqrt{\langle P_{\perp}^2 \rangle}$

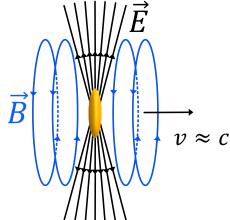
$\sqrt{\langle P_{\perp}^2 angle}$ (MeV/c)	UPC Au+Au	60-80% Au+Au	
Measured	38.1 ± 0.9	50.9 ± 2.5	
QED	37.6	48.5	
b range (fm)	≈ 20	≈ 11.5 <i>−</i> 13.5	


- Leading order QED calculation of $\gamma\gamma \rightarrow e^+e^-$ describes both spectra (±1 σ)
- \circ Best fit for spectra in 60-80% collisions found for QED shape plus 14 ± 4 (stat.) ± 4 (syst.) MeV/c broadening
- Proposed as a probe of trapped magnetic field or Coulomb scattering in QGP [1-3]

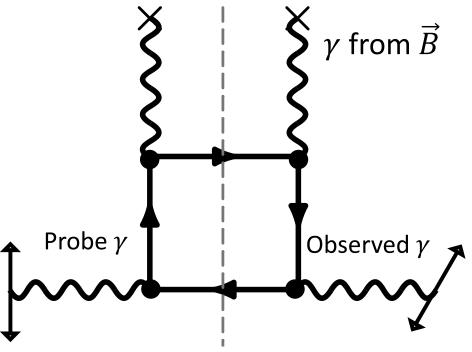
STAR observes 4.8 σ difference between UPC and 60-80% Au+Au collisions

Optical Birefringence

Birefringent material: Different index of refraction for light polarized parallel (n_{\parallel}) vs. perpendicular (n_{\perp}) to material's ordinary axis


ightarrow splitting of wave function when $\,\Delta n = n_{\parallel} - n_{\perp}
eq 0 \,$

Birefringence of the QED Vacuum


Vacuum birefringence : Predicted in 1936 by Heisenberg & Euler. Index of refraction for γ interaction with \vec{B} field depends on relative polarization angle i.e. $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} \neq 0$

Lorentz contraction of EM fields \rightarrow Quasi-real photons should be <u>linearly polarized</u> $(\vec{E} \perp \vec{B} \perp \vec{k})$

Can we observe vacuum birefringence in ultra-peripheral collisions?

Feynman Diagram for Vacuum Birefringence

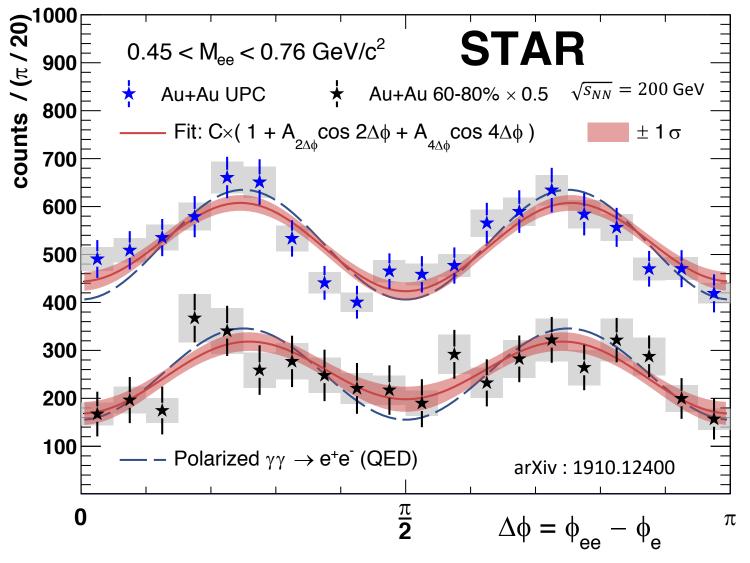
Real(n) = transmission process $\gamma\gamma \rightarrow \gamma\gamma$ Imag(n) = absorption process $\gamma\gamma \rightarrow e^+e^-$ (diagram cut)

S. Bragin, et. al., *Phys. Rev. Lett.* 119 (2017), 250403 R. P. Mignani, *et al.*, *Mon. Not. Roy. Astron. Soc.* 465 (2017), 492

Birefringence of the QED Vacuum

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019) QED calculation: arxiv: 1911.00237

Recently realized, $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} \neq 0$ leads to $\cos(n\Delta\phi)$ modulations in polarized $\gamma\gamma \rightarrow e^+e^-$ [1]


$$\Delta \phi = \Delta \phi [(e^+ + e^-), (e^+ - e^-)]$$

 $\approx \Delta \phi [(e^+ + e^-), e^+]$

Ultra-Peripheral

Quantity	Measured	QED	χ^2/ndf
$-A_{4\Delta\phi}(\%)$	16.8 ± 2.5	22	18.8 / 16

Peripheral (60–80%)

Quantity	Measured	QED	χ^2/ndf
$-A_{4\Delta\phi}(\%)$	27±6	39	10.2 / 17

Birefringence of the QED Vacuum

[1] C. Li, J. Zhou, Y.-j. Zhou, Phys. Lett. B 795, 576 (2019) QED calculation: arxiv: 1911.00237

Recently realized, $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp} \neq 0$ leads to $\cos(n\Delta\phi)$ modulations in polarized $\gamma\gamma \rightarrow e^+e^-$ [1]


$$\Delta \phi = \Delta \phi [(e^+ + e^-), (e^+ - e^-)]$$

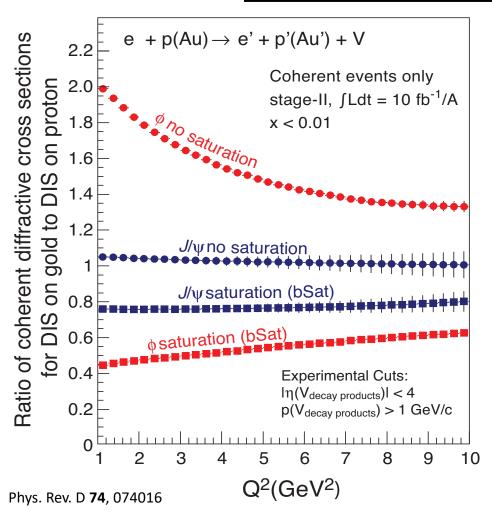
$$\approx \Delta \phi [(e^+ + e^-), e^+]$$

Ultra-Peripheral

Quantity	Measured	QED	χ^2/ndf
$-A_{4\Delta\phi}(\%)$	16.8 ± 2.5	22	18.8 / 16

Peripheral (60-80%)

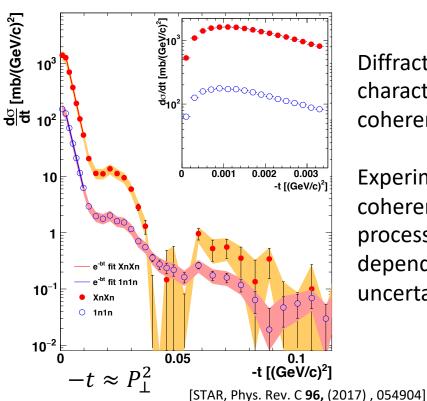
Quantity	Measured	QED	χ^2/ndf
$-A_{4\Delta\phi}(\%)$	27±6	39	10.2 / 17


\rightarrow First Earth-based observation (6.7 σ level) of vacuum birefringence

Probing Saturation at the EIC

> Where does the saturation of gluon densities set in?

One of three "most intellectually pressing questions that an EIC will address..."

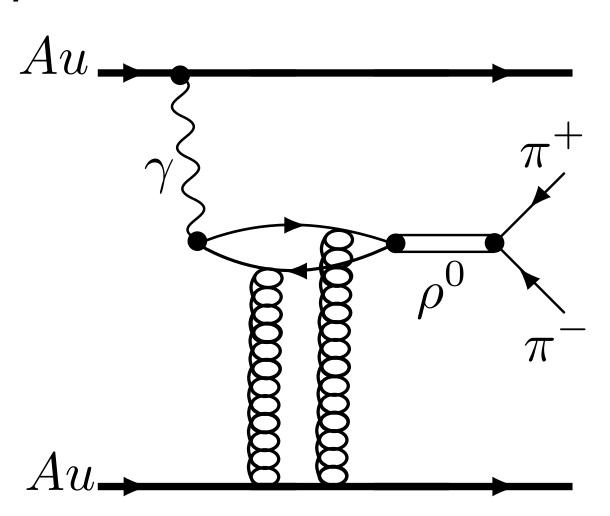

Daniel Brandenburg

[EIC White Paper https://www.bnl.gov/npp/docs/EIC White Paper Final.pdf]

Experimentally accessible through diffractive photoproduction process

Diffractive ho^0 photoproduction at STAR

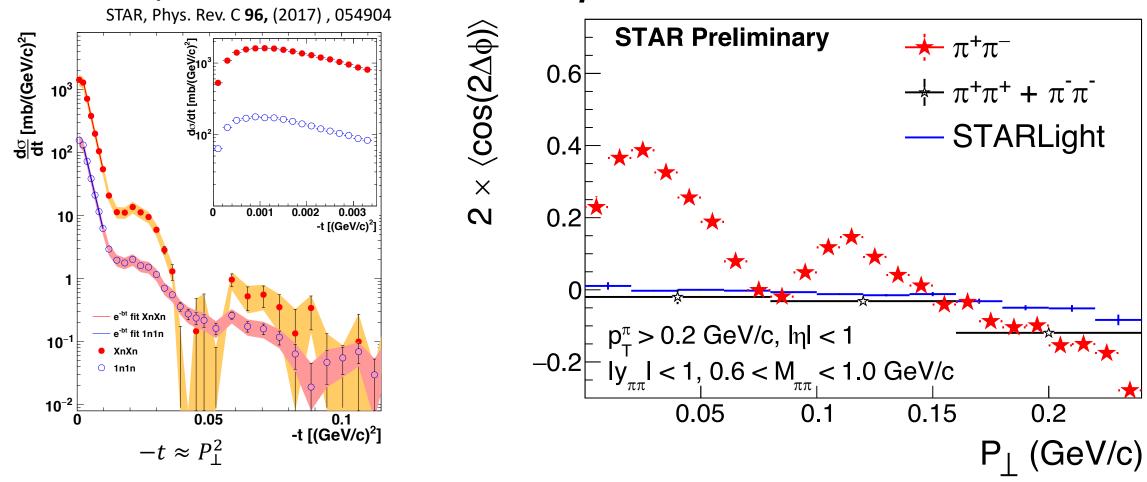
Diffraction peaks are the characteristic feature for coherent diffractive events


Experimentally, separation of coherent and incoherent process can be difficult (model dependent) with large uncertainties

Photoproduction of the ho^0 Meson

Employ the same observable for $\rho^0 \to \pi^+\pi^-$ (and direct $\pi^+\pi^-$)

- Use the polarized γ as a probe of the nucleus
- \circ Calculate coefficients $\langle \cos(n\Delta\phi) \rangle$

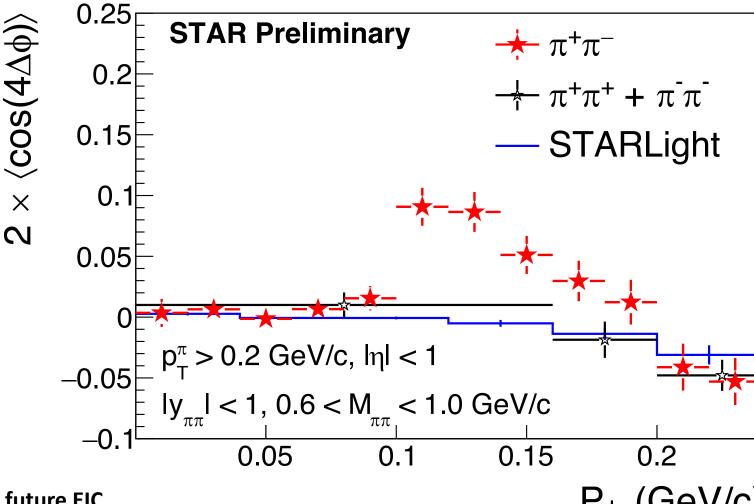

$$\Delta \phi = \Delta \phi [(\pi^+ + \pi^-), (\pi^+ - \pi^-)]$$

16

J. Zhou Phys. Rev. D **94** (2016), 114017

Photoproduction of the ho^0 Meson

- \circ Amplitude of the $\cos(2\Delta\phi)$ modulation appears to be related to diffraction peaks
- o Theory input needed for quantitative description of data


Photoproduction of the ho^0 Meson

Observation of significant $\cos(4\Delta\phi)$ modulation with respect to background

Predicted to be sensitive to the gluon Generalized Transverse Momentum Dependent (GTMD) Distribution [1]

"...offers direct access to the second derivative of the saturation scale with respect to b_{\perp}^{2} " [1]

Tensor Pomeron model may also lead to $\cos 4\Delta\phi$ modulations

Same analysis possible for J/ψ and ϕ at future EIC

Theory input needed for quantitative description of data

[1] J. Zhou Phys. Rev. D **94** (2016), 114017

11/05/19 Daniel Brandenburg

Summary 1

1. Measurements of exclusive $\gamma\gamma \rightarrow e^+e^-$ process

2. Experimental demonstration that the $\sqrt{\langle P_{\perp}^2 \rangle}$ spectra from $\gamma \gamma \to l^+ l^-$ depends on impact parameter (4.8 σ observation)

3. First Earth-based observation of Vacuum Birefringence:

Observed (6.7 σ) via angular modulations in linear polarized $\gamma\gamma \rightarrow e^+e^-$ process

Summary 2 (Applications)

New observable measured for photoproduced ho^0 Meson

- \circ Significant $\cos 2\Delta\phi$ and $\cos 4\Delta\phi$ modulations observed at STAR
- May be sensitive to gluon Generalized Transverse Momentum Dependent (GTMD) Distribution
- May be related to the spin of Pomeron (in Pomeron model)
- Theory input still needed for quantitative description of data
- \circ Even more opportunities at the EIC with J/ψ , ϕ , etc.

Thank you for your attention

Awards, Talks and Papers

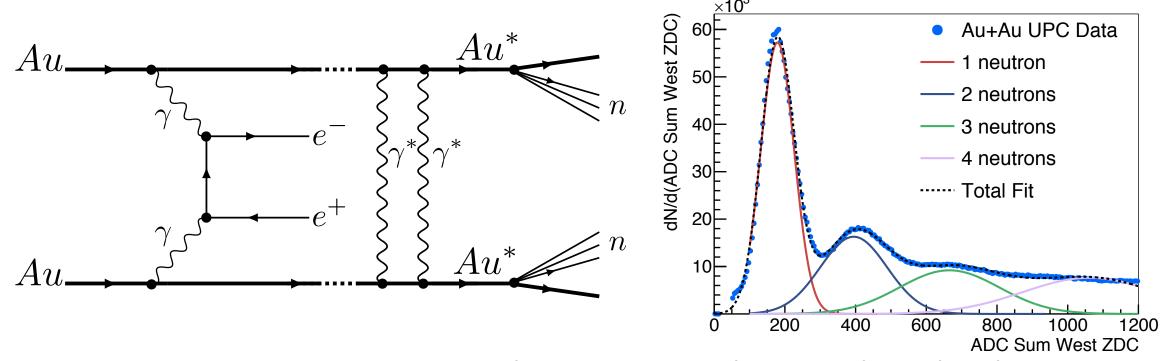
Awards:

Nuclear Physics A Young Scientist Award, Quark Matter 2019

Selected Talks:

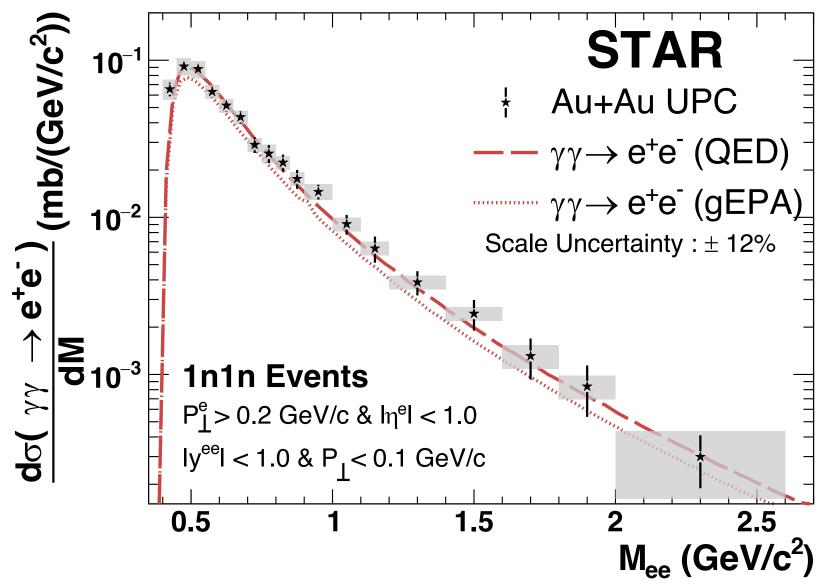
- Seminar, "Energy Dependence of Jet Quenching Signatures", Brookhaven National Laboratory, Jan 18, 2019
- Lecture, "Machine Learning Opportunities in STAR", STAR Collaboration Meeting Student Day, March 29, 2019
- Seminar, "Machine Learning for Heavy Ion Collisions", Shandong University, May 10, 2019
- Lecture, "Exploring QCD Matter at High Baryon Density", FAIRNESS, May 24, 2019
- Plenary, "STAR Upgrades", RHIC & AGS User's Meeting, June 4, 2019
- Parallel, "STAR Upgrades", Initial Stages, June 24, 2019
- Parallel, "Measurement of the $\gamma\gamma \to e^+e^-$ Process and its Angular Correlations", Quark Matter, Nov 5, 2019

Papers:


- (Principle Author), " J/ψ suppression in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV through the dimuon channel at STAR", Physics Letters B, (2019)
- W. Zha, JDB, et al., "Initial transverse-momentum broadening of Breit-Wheeler process in relativistic heavy-ion collisions", Physics Letters B (2019)
- (Corresponding Author), "Probing Extreme Electromagnetic Fields with the Breit-Wheeler process", arxiv:1910.12400

Backup

The $\gamma\gamma \rightarrow e^+e^-$ Process


1934 Breit & Wheeler: "Collision of two Light Quanta"

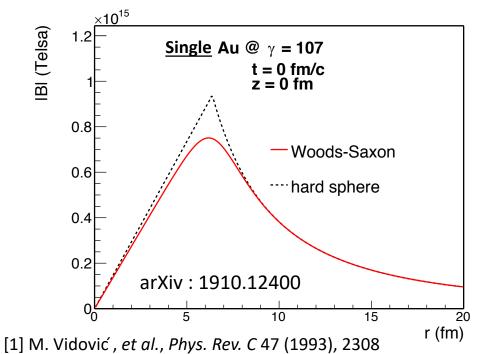
G. Breit and J. A. Wheeler. Physical Review 46 (1934): 1087

 Trigger on neutrons in ZDC → Select events with mutual Coulomb excitation followed by dissociation

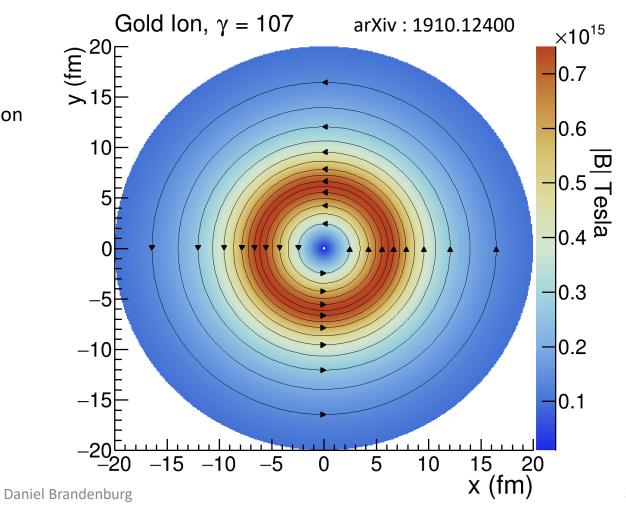
$d\sigma/dM$ for events with 1n1n events

1n1n: events with 1 neutron in each ZDC

11/05/19 Daniel Brandenburg 24


Application: Mapping the Magnetic Field

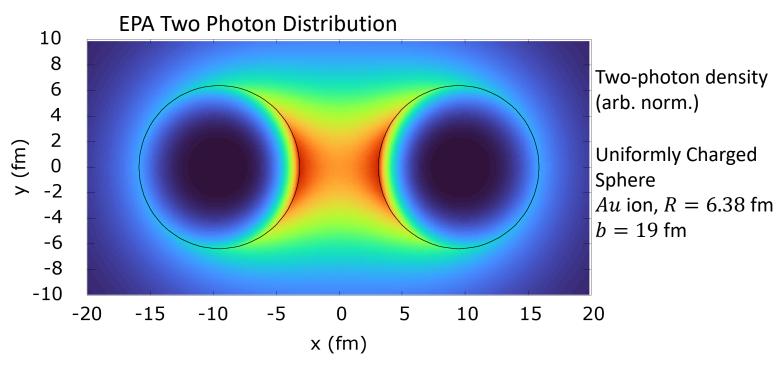
Total and differential cross-sections (e.g. $d\sigma/dP_{\perp}$) for $\gamma\gamma \to e^+e^-$ are related to field strength and configuration


photon density is related to energy flux of the electromagnetic fields [1]

$$n \propto \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

 \rightarrow Report \overrightarrow{B} (single ion) that matches measured cross-section

11/05/19

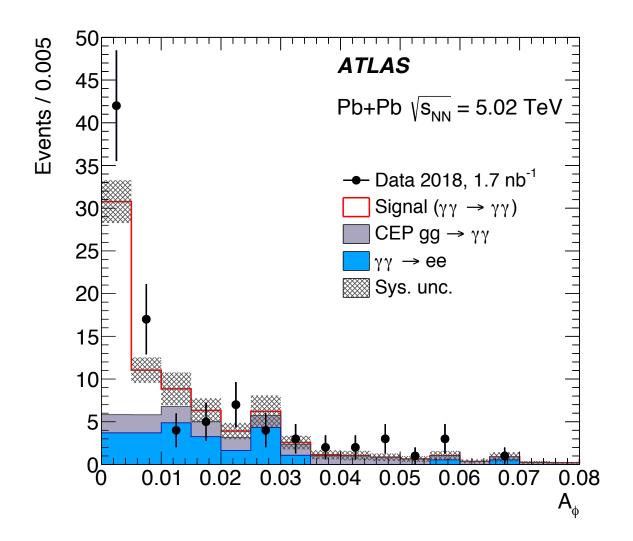

Application: Mapping the Magnetic Field

The colliding photons in the $\gamma\gamma \rightarrow e^+e^$ process <u>originate from the Lorentz-</u> contracted Electromagnetic fields

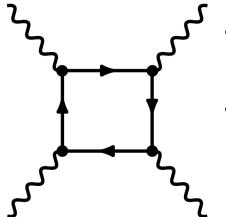
photon density is related to energy flux of the electromagnetic fields

$$n \propto \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

For highly Lorentz contracted fields $|E| \approx |B|$ with $\vec{E} \perp \vec{B}$ and $\vec{S} \propto |E|^2 \approx |B|^2$

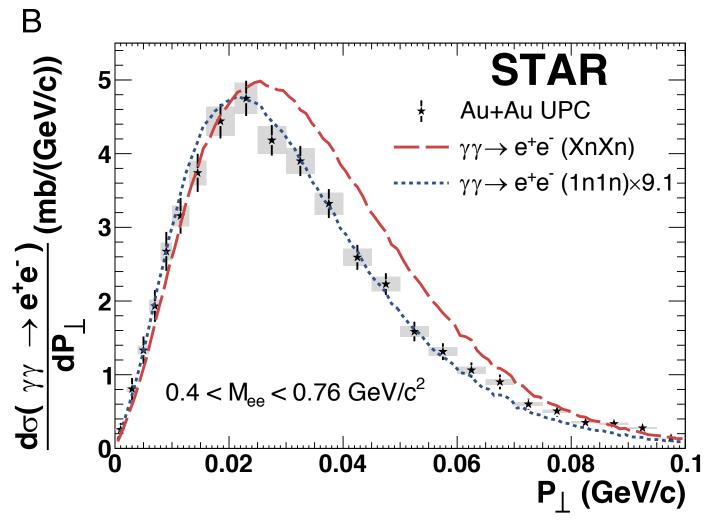

Equivalent Photon Approximation, photon density (single ion):

$$n(\omega;b) = \frac{1}{\pi\omega} |E_{\perp}(b,\omega)|^2 = \frac{1}{\pi\omega} |B_{\perp}(b,\omega)|^2 = \frac{4Z^2\alpha}{\omega} \left| \int \frac{d^2k_{\perp}}{(2\pi)^2} k_{\perp} \frac{F(k_{\perp}^2 + \omega^2/\gamma^2)}{k_{\perp}^2 + \omega^2/\gamma^2} e^{-ib\cdot k_{\perp}} \right|^2$$


[1] M. Vidović, et al., Phys. Rev. C 47, 2308 (1993).

[2] C. F. v. Weizsa cker, Z. Phys. 88, 612 (1934).

Example: Light-by-Light Scattering


ATLAS Observed Light-by-Light Scattering in UPCs:

- Purely quantum mechanical process $(lpha_{em}^4)$
- Light-by-Light scattering involves real photons by definition

ATLAS, Nature Physics 13 (2017), 852

$d\sigma(\gamma\gamma \to e^+e^-)/dP_\perp$

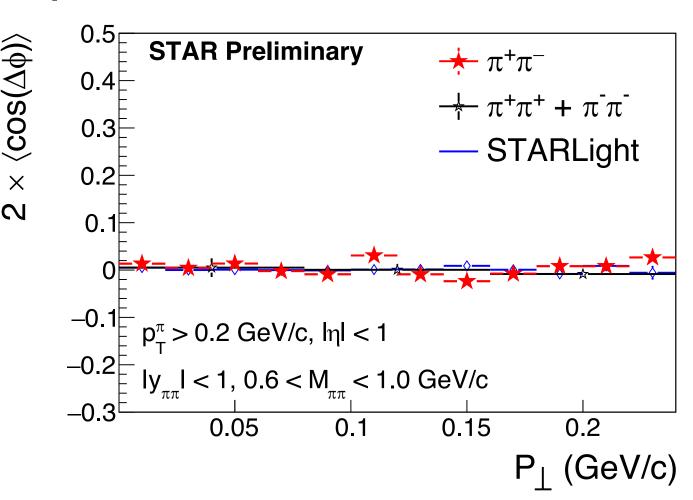
- Cross-section peaks at low P_{\perp} , as expected for real photon collisions
- QED calculations predicts higher $\langle P_{\perp} \rangle$ at smaller impact paramters (b)

More neutrons in ZDC Fewer neutrons in ZDC Smaller
$$\langle b \rangle$$
 Larger $\langle b \rangle$

- Total σ corrected to XnXn condition, but shape is not corrected.
- Data agrees well with QED calculation (scaled 1n1n condition)

QED Calculation: W. Zha, J.D.B., Z. Tang, Z. Xu arXiv:1812.02820 [nucl-th]

Photoproduction of the ρ^0 Meson


Use similar observable for $\rho^0 \to \pi^+\pi^-$

- Calculate coefficients $\langle \cos(n\Delta\phi) \rangle$
- Sensitive to gluon distribution and gradients

n=1: Closure test, no modulation expected

Background estimates:

- 1. STARLight (does not include polarization effects)
- Data-driven (like-sign pairs)

$$\Delta \phi = \Delta \phi [(\pi^+ + \pi^-), (\pi^+ - \pi^-)]$$

J. Zhou Phys. Rev. D **94** (2016), 114017

S