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will turn out that an analysis of the dependence of the effect on the geometry of the patch
Ω casts considerable light on the dynamical mechanisms involved in non-global effects.
Secondly it allows us to make a general order of magnitude estimate of the importance of
non-global terms relative to those from the resummation of primary emissions. Finally the
measurement of energy-flow distributions in 2-jet events in e+e− collisions or DIS could well
be of intrinsic interest since it would be complementary to measurements in hadron-hadron
collisions, and in particular, free of the problems associated with the underlying event.

2. Primary emission form factor

In this paper we shall be considering as our observable the amount of transverse energy Et

flowing into a patch Ω in rapidity and azimuth:

Et =
∑

i∈Ω

Et,i . (2.1)

We are interested in the probability ΣΩ for Et to be less than some value QΩ which is much
smaller than the hard scale Q of the process in question:

ΣΩ(QΩ, Q) =
1
σ

∫ QΩ

0
dEt

dσ

dEt
, (2.2)

where σ is the Born-order cross section for the process — in our case the production of
two jets in e+e− or of 1 + 1 jets in DIS.

In order, later on, to quantify the effect of non-global logs it is useful first to calculate
the contribution to ΣΩ from primary emissions alone. This is the much simpler 2-jet
analogue of what has been calculated in [2] for 4-jet systems.

At first order in αs, the logarithmically enhanced contribution to ΣΩ comes from the
incomplete cancellation of real and virtual contributions for a soft primary emission:

Σ(1)
Ω (QΩ, Q) = −4CF

αs

2π

∫ Q/2

QΩ

dkt

kt

∫

Ω
dη

dφ

2π
= −4CF αs

2π
AΩ ln

Q

2QΩ
, (2.3)

where we have introduced the notation AΩ for area of the region Ω,

AΩ =
∫

Ω
dη

dφ

2π
. (2.4)

The upper limit in the kt integral is arbitrary to single-log accuracy, as long as it is of
order Q.

When the logarithm of Q/QΩ becomes large enough to compensate the smallness of
αs, it is necessary to include terms (αs ln Q

QΩ
)n to all orders. If one assumes (incorrectly, as

we shall see) that multiple wide-angle soft gluons from a two-jet system are simply radiated
independently according to a two-particle antenna pattern, then eq. (2.3) can be extended
to all orders by accounting for the running of the coupling3 and then exponentiating the
answer:

ΣΩ,P(QΩ, Q) ≡ ΣΩ,P (t(QΩ, Q)) = exp [−4CFAΩt] . (2.5)

3Strictly speaking the running of the coupling is connected with the collinear branching of the primary

gluons. This however is a separate issue from that of large-angle soft gluon emission with which we deal

later on in this article.
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accompanied by soft radiation, as in Eq. (2) above. Such cross sections, were termed “global”
by Dasgupta and Salam in Ref. [11]. Recently, Banfi, Salam and Zanderighi have extended NLL
resummation to a wide class of global observables in e+e−, DIS and hadron-hadron scattering,
by developing an innovative software package [12].

4 Non-global Logs: Color and Energy Flow

Complementary to jet shapes are descriptions of interjet energy flow. A simple illustration is
shown in Fig. 2, where we trigger on two jet events in the scattering of particles A and B, and
measure the inclusive distribution ΣΩ(E), where E ≥ EΩ ≥ 0, with EΩ the energy that flows
into some angular region Ω, away from both the collision axis and the jet directions. Quantities
like ΣO(E) are sometimes referred to as radiators.

Figure 2: Geometry for energy flow observables.

We can imagine (at least) two choices for such a cross section. First, it may be fully inclusive
in the region Ω̄ between Ω and the jets. In this case, the number of jets is not fixed, and the
observable is nonglobal in the terminology Dasgupta and Salam [11]. This observable cannot be
factorized into a fixed number of jets as in Eq. (2), and as such cannot be resummed to a simple
exponential in the same way as the event shapes described above. Alternatively, we may limit
radiation into region Ω̄ by constructing a correlation with an event shape such as τa that fixes
the number of jets [8, 13].

Cross sections where the number of jets is not fixed are not fully understood, but they remain
infrared safe, so that we should be able to learn about them in perturbation theory. Indeed,
Banfi, Marchesini and Smye [14] showed that at leading logarithm, αn

s ln
n(
√
S/EΩ), and in the

limit of large numbers of colors, Nc, these cross sections obey a beautiful nonlinear evolution
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limit of large numbers of colors, Nc, these cross sections obey a beautiful nonlinear evolution
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SoZ	parLcles	can	resolve	individual	hard	partons,	leading	to	a	mulL-Wilson-line	
structure	

At	the	LL	level,	our	evoluLon	equaLon	can	reduce	to	the	nonlinear	BMS	eq	

Not	restricted	to	LL,	beyond	LL	resummaLon	see		Balsiger,	Becher	&	DYS	’19

The	first	all-order	factorizaLon	and	resummaLon	formula:

Becher,	Neubert,	Rothen,	DYS	’15	PRL

An	EffecLve	Field	Theory	for	non-global	jet	processes
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[15] to discuss scattering at high energy and small angles.
The eikonalization indicates that substantial simplifica-
tions are possible. But that situation would go well beyond
normal factorization.

V. DISCUSSION

We should first emphasize that there is a large overlap
between the present paper and the work in Refs. [1– 4].
What is not so clear from the earlier work is whether
factorization in any standard sense continues to hold in
the process (1.1). For example, in [1], we read ‘‘We have
assumed factorization to hold in this treatment of TMD
effects although it is, at the present, certainly not clear
whether such a factorization holds for hadron-hadron scat-
tering processes with explicitly TMD correlators.’’

Our primary result is to show by a counterexample that
hard-scattering kT factorization with universal parton den-
sities fails for the production of high pT hadrons in hadron-
hadron collisions, when a pair of measured hadrons is close
to back-to-back azimuthally. The overall issue is that in a
gauge theory arbitrary exchanges of gauge fields between
different collinear groups (‘‘jets’’) can occur without any
power suppression. To obtain factorization it is necessary
to show that the sum over these exchanges can be absorbed
into the definitions of the parton densities and fragmenta-
tion functions, assisted by certain cancellations. A full
proof will be quite general, applying to a general gauge
theory and to many reactions. So one particular counter-
example is sufficient to show that such a proof does not
exist; we can then choose the counterexample for maxi-
mum clarity and simplicity.

Even for those cases where factorization does hold, the
need to make suitable definitions of the parton densities,
etc., so as to absorb the effects of the gluon exchanges
indicates that the parton densities, etc., can always be
regarded as effective densities [16]. The primary practical
issue is whether they are universal, i.e., the same for all
reactions. In a certain sense, the well-known scale depen-
dence of the densities is a kind of nonuniversality: different
parton densities are needed when the scale of the hard
scattering is given a large increment. But there is an
evolution equation for the scale dependence, and this ap-
plies to an individual parton density. No details or specifi-
cation of the hard scattering is needed to treat the evolution
equation, either to derive it or to apply it. We should
therefore refer in this case to ‘‘modified universality,’’ not
to nonuniversality. Similarly the reversal of the sign of the
Sivers function between SIDIS and DY processes is a case
of modified universality.

At the upper end of the exchanged gluon in our counter-
example, the interactions can be treated in the eikonal
approximation. This is very similar to other discussions
of partons passing through the gluon field of another
hadron. A selection of relevant papers is [15,17– 19].
Much of that work concerns the small x region, diffractive

scattering, etc., whereas our counterexample applies in the
fully conventional region where normal parton-model con-
cepts are generally considered as fully applicable, i.e.,
parton fractional momenta are moderate and the scale of
the hard scattering is comparable to the center-of-mass
energy rather than being much less.

Of course, interesting simplifications do occur, so that
useful quantitative estimates can surely be obtained for the
nonfactorizing effects. However the methods are rather
different than those for conventional factorization.
References [15,17– 19] indicate that the effects of the
eikonalized interactions are substantial, so that the numeri-
cal effects of nonfactorization should be significant; in the
present paper we did not estimate the numerical size of the
nonfactorization.

The gluon exchanges in our counterexample are clearly
tied to the target hadron at their lower end. But the coupling
at the upper end concerns some parton other than the one
coming out of the lower hadron. The noncanceling terms
are sufficiently tied to the color flow at the hard interaction
that they are not universal in any normal sense. This is the
clearest indication of nonuniversality.

The reader should not be misled by specific features of
our counterexample into supposing that the failure of
factorization is correspondingly restricted. These features
include: the use of an SSA, the particular features of the
model, and the particular order of perturbation theory. The
use of the SSA is simply a way of getting the maximal
conceptual sensitivity to problems in constructing a proof
of factorization. For an unpolarized cross section, we
would need an extra gluon to be exchanged in order for
the nonfactorization issues to arise, from graphs such as
those in Fig. 8. Evidently, to demonstrate nonfactorization
explicitly in this case, the number of graphs would be
larger than in our example, and the explicit calculations
would be much more lengthy. Standard power-counting
arguments show that the contribution of this and related
graphs is of leading power. It is very important to deter-

FIG. 8 (color online). The exchange of two extra gluons, as in
this graph, will tend to give nonfactorization in unpolarized cross
sections.

kT FACTORIZATION IS VIOLATED IN PRODUCTION . . . PHYSICAL REVIEW D 75, 114014 (2007)

114014-7

TMD	factorizaLon	is	violated	in	di-jet/di-hadron	producLon
Collins,	Qiu	`07;	Collins	`07,	Vogelsang,	Yuan	`07;	Rogers,	Mulders	`10,	…

Rogers,	Mulders	`10

different graphs depending on whether the interaction is in
the initial or final state.

So, we will only consider graphs that can yield contri-
butions from the Glauber region. Since real gluons can
never be in the Glauber region, we will only consider
graphs with virtual gluons. Also, as long as no restrictions
are placed on the target remnant momenta, graphs with
spectator-spectator interactions cancel [5] in the integra-
tion over final states [28]. Similar cancellations occur
between different cuts of the same graph for active-
spectator interactions after parton transverse momentum
is integrated over, and are needed in the standard proofs of
collinear factorization [5]. A counter-proof of TMD-
factorizaton therefore needs to show that such cancella-
tions generally fail when transverse parton momentum is
explicitly taken into account. A specific example of such a
noncancellation was given in Ref. [18] and will be re-
viewed in Sec. IV. In graphs with attachments between
active quarks, there are not enough Dirac !-matrices to
give spin dependence to the TMD PDFs. Such graphs will
therefore not affect our discussion of single and double
spin asymmetries at lowest nonvanishing order.
Furthermore, graphs with a scalar-scalar-gluon-gluon ver-
tex do not give leading power contributions to eikonal
factors.

We remark that, because the TMD factorization break-
ing effects are due to the Glauber region where all compo-
nents of gluon momentum are small, the interactions
responsible for breaking TMD factorization are associated
with large distance scales.

In our specific model, a large number of graphs vanish
simply because of the highly simple color structure in-
volved. Examples are shown in Fig. 2. They vanish because
their color factors include a trace around a color loop of a
single SUðNcÞ generator, TrC½ta$ ¼ 0. (The C on the
TrC½& & &$ denotes a trace over triplet color indices.)

Hence, the relevant types of graphs are represented by
Figs. 3– 8. If a generalized TMD-factorization formula is
possible, then the sum over all such graphs must produce a
factorized form like Eq. (3) with a Wilson line structure in
the TMD PDF or FF for each hadron separately. We will
consider each type of graph in the following sections.

III. ONE EXTRA GLUON

We begin the investigation of diagrams by reviewing the
steps for determining the contribution from a single extra
gluon. As in Ref. [17], we focus on the calculation of an
SSA. We start with graphs of the type shown in Fig. 3,
where the extra gluon attaches on the side of the hard part
nearest to its parent hadron. Any spin asymmetry disap-
pears in the zeroth order cross section, Fig. 1 because there
are too few Dirac matrices to produce a nonzero result in
the traces with !5.
Consider, for example, Fig. 3(a). The arrow on the gluon

line indicates that it is collinear to H1. By first deforming
the l integral out of the Glauber region to the H1-collinear
region, one may replace the intermediate struck quark line
of momentum k3 ' l by the eikonal factor

tagn"1
'lþ þ i#

¼ 'gtan"1 P:V:
1

lþ
' igtan"1 $%ðlþÞ; (8)

where n"1 ) ð0; 1; 0tÞ. The sign on the i# is determined by
the direction of the contour deformation. For the spin-
dependent part, the attachment of the extra gluon at the
spectator produces a factor at leading power equal to

ta

2
TrD½ð 6p1 þ m H1

Þ!5s1ð 6p1 ' 6k1 þ 6 lþ m c 1
Þ

* !þð 6p1 ' 6k1 þ m c 1
Þ$

+ 2ita#jks
j
1l

kpþðm H1
ð1' x1Þ þ m c 1

Þ: (9)

When this expression is combined with the imaginary part
of Eq. (8), the factors of 'i and i combine and a contri-
bution to an SSA is obtained. The #jk is the two-
dimensional Levi-Civita symbol with #12 ¼ 1.
If the extra gluon is on the other side of the cut as in

Fig. 3(b), the eikonal factor is

tagn"1
'lþ ' i#

¼ 'gtan"1 P:V:
1

lþ
þ igtan"1 $%ðlþÞ: (10)

The factor from the attachment at the spectator is,

FIG. 2. Typical cases of graphs that vanish when extra gluons are considered because of the trivial color factor, TrC½ta$ ¼ 0.

TED C. ROGERS AND PIET J. MULDERS PHYSICAL REVIEW D 81, 094006 (2010)

094006-6

• The	first	step:	study	TMD	factorizaLon	without	Glauber	region	

• Tools:	SoZ-Collinear	EffecLve	Theory	
• Assign	scaling	behavior	to	fields	
• Expand	Lagrangian	to	leading	power	
• ResummaLon	with	RenormalizaLon	Group	

(Bauer,	Pirjol,	Stewart	et.al.	’01,	’02)
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Much of that work concerns the small x region, diffractive

scattering, etc., whereas our counterexample applies in the
fully conventional region where normal parton-model con-
cepts are generally considered as fully applicable, i.e.,
parton fractional momenta are moderate and the scale of
the hard scattering is comparable to the center-of-mass
energy rather than being much less.

Of course, interesting simplifications do occur, so that
useful quantitative estimates can surely be obtained for the
nonfactorizing effects. However the methods are rather
different than those for conventional factorization.
References [15,17– 19] indicate that the effects of the
eikonalized interactions are substantial, so that the numeri-
cal effects of nonfactorization should be significant; in the
present paper we did not estimate the numerical size of the
nonfactorization.

The gluon exchanges in our counterexample are clearly
tied to the target hadron at their lower end. But the coupling
at the upper end concerns some parton other than the one
coming out of the lower hadron. The noncanceling terms
are sufficiently tied to the color flow at the hard interaction
that they are not universal in any normal sense. This is the
clearest indication of nonuniversality.

The reader should not be misled by specific features of
our counterexample into supposing that the failure of
factorization is correspondingly restricted. These features
include: the use of an SSA, the particular features of the
model, and the particular order of perturbation theory. The
use of the SSA is simply a way of getting the maximal
conceptual sensitivity to problems in constructing a proof
of factorization. For an unpolarized cross section, we
would need an extra gluon to be exchanged in order for
the nonfactorization issues to arise, from graphs such as
those in Fig. 8. Evidently, to demonstrate nonfactorization
explicitly in this case, the number of graphs would be
larger than in our example, and the explicit calculations
would be much more lengthy. Standard power-counting
arguments show that the contribution of this and related
graphs is of leading power. It is very important to deter-

FIG. 8 (color online). The exchange of two extra gluons, as in
this graph, will tend to give nonfactorization in unpolarized cross
sections.
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TMD	factorizaLon	is	violated	in	di-jet/di-hadron	producLon
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different graphs depending on whether the interaction is in
the initial or final state.

So, we will only consider graphs that can yield contri-
butions from the Glauber region. Since real gluons can
never be in the Glauber region, we will only consider
graphs with virtual gluons. Also, as long as no restrictions
are placed on the target remnant momenta, graphs with
spectator-spectator interactions cancel [5] in the integra-
tion over final states [28]. Similar cancellations occur
between different cuts of the same graph for active-
spectator interactions after parton transverse momentum
is integrated over, and are needed in the standard proofs of
collinear factorization [5]. A counter-proof of TMD-
factorizaton therefore needs to show that such cancella-
tions generally fail when transverse parton momentum is
explicitly taken into account. A specific example of such a
noncancellation was given in Ref. [18] and will be re-
viewed in Sec. IV. In graphs with attachments between
active quarks, there are not enough Dirac !-matrices to
give spin dependence to the TMD PDFs. Such graphs will
therefore not affect our discussion of single and double
spin asymmetries at lowest nonvanishing order.
Furthermore, graphs with a scalar-scalar-gluon-gluon ver-
tex do not give leading power contributions to eikonal
factors.

We remark that, because the TMD factorization break-
ing effects are due to the Glauber region where all compo-
nents of gluon momentum are small, the interactions
responsible for breaking TMD factorization are associated
with large distance scales.

In our specific model, a large number of graphs vanish
simply because of the highly simple color structure in-
volved. Examples are shown in Fig. 2. They vanish because
their color factors include a trace around a color loop of a
single SUðNcÞ generator, TrC½ta$ ¼ 0. (The C on the
TrC½& & &$ denotes a trace over triplet color indices.)

Hence, the relevant types of graphs are represented by
Figs. 3– 8. If a generalized TMD-factorization formula is
possible, then the sum over all such graphs must produce a
factorized form like Eq. (3) with a Wilson line structure in
the TMD PDF or FF for each hadron separately. We will
consider each type of graph in the following sections.

III. ONE EXTRA GLUON

We begin the investigation of diagrams by reviewing the
steps for determining the contribution from a single extra
gluon. As in Ref. [17], we focus on the calculation of an
SSA. We start with graphs of the type shown in Fig. 3,
where the extra gluon attaches on the side of the hard part
nearest to its parent hadron. Any spin asymmetry disap-
pears in the zeroth order cross section, Fig. 1 because there
are too few Dirac matrices to produce a nonzero result in
the traces with !5.
Consider, for example, Fig. 3(a). The arrow on the gluon

line indicates that it is collinear to H1. By first deforming
the l integral out of the Glauber region to the H1-collinear
region, one may replace the intermediate struck quark line
of momentum k3 ' l by the eikonal factor

tagn"1
'lþ þ i#

¼ 'gtan"1 P:V:
1

lþ
' igtan"1 $%ðlþÞ; (8)

where n"1 ) ð0; 1; 0tÞ. The sign on the i# is determined by
the direction of the contour deformation. For the spin-
dependent part, the attachment of the extra gluon at the
spectator produces a factor at leading power equal to

ta

2
TrD½ð 6p1 þ m H1

Þ!5s1ð 6p1 ' 6k1 þ 6 lþ m c 1
Þ

* !þð 6p1 ' 6k1 þ m c 1
Þ$

+ 2ita#jks
j
1l

kpþðm H1
ð1' x1Þ þ m c 1

Þ: (9)

When this expression is combined with the imaginary part
of Eq. (8), the factors of 'i and i combine and a contri-
bution to an SSA is obtained. The #jk is the two-
dimensional Levi-Civita symbol with #12 ¼ 1.
If the extra gluon is on the other side of the cut as in

Fig. 3(b), the eikonal factor is

tagn"1
'lþ ' i#

¼ 'gtan"1 P:V:
1

lþ
þ igtan"1 $%ðlþÞ: (10)

The factor from the attachment at the spectator is,

FIG. 2. Typical cases of graphs that vanish when extra gluons are considered because of the trivial color factor, TrC½ta$ ¼ 0.
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• The	first	step:	study	TMD	factorizaLon	without	Glauber	region	

• Tools:	SoZ-Collinear	EffecLve	Theory	
• Assign	scaling	behavior	to	fields	
• Expand	Lagrangian	to	leading	power	
• ResummaLon	with	RenormalizaLon	Group	

LCollinear + LSoft + · · ·+ LGlauber
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TMD	resummaLon	for	top	quark	pair	producLon:	SCET	+	HQET

• NNLL	predicLons	for	top	quark	pair	producLon	in	the	small	transverse	
momentum	region.

where ! is now the relative azimuthal angle between x?
and v3.

Equation (28) is the master factorization formula of our
paper, which is valid to all orders in "s and to any loga-
rithmic accuracy, up to power corrections of the sizes
q2T=M

2 and !2
QCD=q

2
T . The appearance of the tensor struc-

tures in the gg channel was noted before in the studies of
the Higgs production [62,82,83]. The case for t"t produc-
tion, however, is even more complicated since the hard
matching coefficient itself is a tensor. The situation can be
simplified if we restrict ourselves up to the NNLL accu-
racy. At this order, the second Lorentz structure in the B#$

g=N

functions does not contribute. This is guaranteed since
B0g=N vanishes at the leading order, and

Z 2%

0
d!g#&

?

!
g$'

2
þ x$?x

'
?

x2T

"
Hð0Þ;#$&'

gg ðM; m t; v3;#Þ ¼ 0;

(29)

where Hð0Þ;#$&'
gg is the leading order coefficient of H#$&'

gg

in the perturbative expansion in "s. Once this is true, the

dependence on ! in the integrand of Eq. (28) now resides
only in the soft functions. This fact motivates us to define
new soft functions as

Si"iðL?;M; m t; cos (;#Þ ¼
Z d!

2%
Wðx?;#Þ; (30)

where

L? ¼ ln
x2T#

2

4e%2)E
: (31)

Note that the soft function defined in this way doesn’t
obey non-Abelian exponentiation theorem. The reason is
that the extra phase space integration over ! does not
factorize. This means that at NNLO, the scale indepen-
dent terms proportional to C2

F cannot be obtained by
simply exponentiating the NLO results, but have to be
recalculated. Fortunately, for the logarithmic accuracy
studied in this paper, those terms are not needed. The
simplified factorization formula, valid up to the NNLL
accuracy, now reads

d4'

dq2TdydMd cos (
¼

X

i¼q; "q;g

8%*t

3sM

1

2

Z
xTdxTJ0ðxTqTÞ

!
x2TM

2

4e%2)E

"%Fi"iðx2T ;#Þ
Bi=N1

ð+1; x
2
T;#ÞB"i=N2

ð+2; x
2
T;#Þ

& Tr½Hi"iðM; m t; cos (;#ÞSi"iðL?;M; m t; cos (;#Þ(: (32)

This formula will be the starting point of our NNLL
transverse momentum resummation in the following.

III. NLO RESULTS FOR THE HARD AND SOFT
FUNCTIONS AND THE TMD PDFS

In this section, we present the NLO calculations for the
hard and soft functions and the TMD PDFs which are
relevant for the NNLL transversemomentum resummation.
While the hard functions and the TMD PDFs at NLO are
already available in the literature, the transverse soft func-
tion is new in our framework and is a major difference from
the Drell-Yan process or Higgs production. Therefore, we
will first discuss the calculation of the soft function.

The soft functions are defined in Eqs. (25) and (30). We
define the perturbative expansions of them as

Si"iðL?;M; m t; cos (;#Þ ¼
X1

n¼0

SðnÞ
i"i

!
"s

4%

"
n
: (33)

Up to now we have been treating the soft functions as
abstract matrices in color space. In practice, it is more
convenient to cast them into a matrix form by defining
the matrix elements

SIJ ¼ hcIjSjcJi: (34)

In this form, the LO soft functions for the q "q and gg
channels are given by

Sð0Þ
q "q ¼

N 0

0 CF

2

 !
; Sð0Þ

gg ¼
N 0 0

0 N
2 0

0 0 N2%4
2N

0
BB@

1
CCA : (35)

At the NLO, the soft functions receive contributions
from the diagrams depicted in Fig. 1. We can write the
bare soft functions as

Sð1Þ;bare
i"i

¼
X

j;k

wi"i
jkIjk; (36)

where wi"i
jk is the NLO color matrices defined by

ðwi"i
jkÞIJ ¼

1

dR
hcIjTj )TkjcJi; (37)

with Tj the color generator associated with the parton j.
These matrices can be found in Ref. [14]. Ijk are integrals
of the form

Ijk ¼ %ð4%#2Þ,
%2%,

Z 2%

0
d!

&
Z

ddk
!

$

n)k

"
"
-ðk2Þ(ðk0Þvj )vke

%ix?)k?

vj )kvk )k
; (38)

where the analytic regularization method of Ref. [80]
is used. We show an example for calculating I13 in
Appendix B. The results for the nonvanishing integrals are
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FIG. 2. Resummed predictions for the qT distribution at NLL
(green band) and NLO+NNLL (black band). Also shown are
the predictions of POWHEG and MCFM.

NLL one. As shown in Fig. 2, the fixed-order predic-
tion from MCFM is not reliable when qT is small, while
the NLO+PS prediction of POWHEG [18] is in good agree-
ment with our NLO+NNLL resummed distribution. It
should be noted that the POWHEG prediction exhibits a
much larger scale dependence than the NLO+NNLL re-
sult, which is not shown in the plot.
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FIG. 3. Comparison of NLO+NNLL resummed prediction
(blue band) for the normalized qT distribution with the ex-
perimental data from the CMS collaboration.
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FIG. 4. The top quark charge asymmetry as a function of qT .
The Pythia and MC@NLO curves are extracted from [4].

In Fig. 3 we show our NLO+NNLL resummed predic-

tion for the normalized qT distribution, together with the
experimental data from the CMS collaboration [2], using
an integrated luminosity of 1.14 fb−1 at the LHC with√
s = 7 TeV. In this plot a non-perturbative factor of the

form exp(−Λ2
NPb

2) is included for the qq̄-channel, with
ΛNP = 0.6 GeV [12]. For the gg-channel, the relevant
scale is q∗g >∼ 14.0 GeV, we therefore do not consider non-
perturbative effects here. The experimental data shows
good agreement with our resummed prediction.
We finally turn to the qT -dependent top quark charge

asymmetry AFB. This quantity is of substantial interest
because it will provide new hints for the puzzle of large
deviation in AFB observed at the Tevatron. In QCD, the
asymmetry starts at NLO, however, it was found that
an LO parton shower program like Pythia can exhibit
non-zero AFB. As was explained in [19], this is due to
the fact that in the hard process qq̄ → tt̄, color coherence
of the parton shower pushes the top-quark pair to higher
transverse momentum when the top goes backwards. In
our resummation formalism, this color coherence is ac-
counted for by the soft function Sqq̄, whose dependence
on t1 and u1 is asymmetric. In Fig. 4, we present
our resummed prediction for this observable, together
with predictions from MC@NLO and Pythia extracted from
[4]. Interestingly, our NLO+NNLL resummed prediction
shows very good agreement with the NLO+PS program
MC@NLO. In particular, they predict the same cross-over
at qT ∼ 25 GeV.
In conclusion, for the first time, we have presented

a resummation framework for the transverse-momentum
spectrum of top-quark pairs at hadron collider, valid up
to arbitrary logarithmic accuracy. Compared with Drell-
Yan and Higgs production, a new ingredient in our for-
malism is the introduction of the transverse soft function
matrices, which describe the soft gluon effects associated
with final-state radiations. We have explicitly shown that
when expanded to O(αs), our resummation formula re-
produces precisely the fixed-order prediction from MCFM

at small qT . We have carried out the resummation at
NNLL accuracy. Our results agree quite well with those
from parton shower programs and with the CMS mea-
surement, while exhibiting a small scale dependence. We
have also examined the qT -dependent top quark charge
asymmetry, which could help clarifying the large devia-
tion from the SM observed at the Tevatron. Our formal-
ism can also be applied to the bb̄, cc̄ production, as well
as the production of colored supersymmetric partners.
With the NNLO soft function which may be calculated in
the future, our work provides a new subtraction method
for computing the tt̄ differential cross sections at NNLO,
following the qT subtraction method of [20]. Finally, it
is interesting to incorporate the decays of the top quark
into our framework in a way similar to [21], which we
leave for future works.
This work was supported in part by the National

Natural Science Foundation of China under Grants No.

(Li,	Li,	DYS,	Yang,	Zhu,	’13	PRL)
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Jet	radius	and	TMD	resummaLon	for	boson-jet	correlaLon
(Chien,	DYS	&	Wu		’19)

N1(P1) +N2(P2) ! boson(pV ) + jet(pJ)| {z }
qT

+X

• Collinear-SoZ	(CoZ)	modes:																																											for	the	jet	radius	R	
resummaLon	(Becher,	Neubert,	Rothen	&	DYS	’15;	Chien,	Hornig	&	Lee	’15;	Kolodrubetz,	Pietrulewicz,	
Stewart,	Tackmann	&	Waalewijn	’16;	Buffing,	Kang,	Lee	&	Liu	`18;	……)	

• MulL-Wilson-Line	operators	describe	radiaLons	along	the	jet	direcLon	for	
NGLs	resummaLon	(Caron-Hout	’15;	Becher,	Neubert,	Rothen	&	DYS	’15;	……)

pµt ⇠ qT (R
2, 1, R)nJ n̄J

ph ⇠ Q(1, 1, 1)

pnJ ⇠ pJT (R2, 1, R)nJ n̄J

pt ⇠ qT (R2, 1, R)nJ n̄J

ps ⇠ (qT , qT , qT )

pn1 ⇠ (q2T /Q,Q, qT )n1n̄1

Figure 1. Boson+jet production in hadron collisions. Here pV and pJ are the momenta of the
color singlet boson and the jet, and R is the jet radius. By definition ~qT = ~p

J
T + ~p

V
T . The modes

relevant for the observable qT include the soft modes with momentum ps, and the collinear modes
along the two beam directions (n1 and n2) and the jet direction (nJ). Small-angle soft modes are
taken as an independent degree of freedom from those emitted from the jet at wide angle, and its
momentum is denoted as pt. The n1-collinear and n2-collinear modes and soft modes all have a
transverse momentum ⇠ qT , while the nJ -collinear modes carry most of the jet momentum.

quark-gluon plasma (QGP) is produced. Through interactions with the medium, jets in the

event can be significantly modified while the color-singlet boson remains intact that can

serve as a robust reference of the hard scattering process. This makes boson+jet production

a useful channel for studying the properties of QGP though the relation between transverse

momentum broadening and energy loss of jets in high-energy nuclear collisions [45], which

requires a proper resummation of large logarithms [24, 46, 47]. The kinematic information

of the boson+jet system has been explored quite extensively [48–54]. For example, the qT ,

the boson-jet momentum imbalance XJV ⌘ p
J
T /p

V
T , and the azimuthal angle decorrelation

|��JV |: the azimuthal angle between the jet and the boson as measured along the beam

direction, have been experimentally studied in Z+jet [55–59] and �+jet [60] events at the

LHC.

The rest of the paper is organized as follows. In section 2, we analyze all the relevant

degrees of freedom which contribute to qT . We give a detailed derivation of our factorized

expression (2.27) using a two-step matching procedure in SCET. In section 3, we discuss the

renormalization of all the bare functions entering (2.27) and give an all-order resummation

formula in (3.13). We explain the relation between our resummation formula with those in

[24, 25, 28]. The anomalous dimensions relevant for the NLL resummation are also given in

this section. In section 4 we analyze the Sudakov double logarithms, while in section 5.2 we

– 3 –
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From the above two equations, one finally has

J k(p2J , ~xT , ✏) !
1X

m=1

hJ k
m({nJ}, R pJ , ✏)⌦ Uk

m({nJ}, R ~xT , ✏)i (2.21)

where h· · · i ⌘ 1

dJ
Tr[· · · ] denotes the trace over all the color indices divided by the dimension

of the color representation of �k
nJ
, and ⌦ is a short-hand notation for

mQ
i=1

R
d⌦~nJi

/(4⇡) with

⌦~nJi
the solid angle of ~nJi in d-dimension. The jet function J k

m with m collinear particles

is defined as

P
↵0
J↵J

nJ J k
m({nJ}, R pJ , ✏) ⌘ 2n̄J · pJ(2⇡)d�1

X

spins

mY

i=1

Z
dEJiE

d�3

Ji

(2⇡)d�2
�

⇣
n̄ · pJ �

mX

i=1

n̄ · pJi
⌘

⇥ �
(d�2)

⇣ mX

i=1

~pJi?

⌘
⇥in({pJ})

���Mk
m(pJ ; {pJ})

ED
Mk†

m (pJ ; {pJ})
��� , (2.22)

and the coft function Um takes the form

Um({nJ}, R ~xT , ✏) = (2.23)
XZ

Xt

e
i
2
poutt ·n̄J~nJT ·~xT h0|U †

n̄J
(0)U †

nJ1
(0) · · ·U †

nJm
(0)|XtihXt|Un̄J (0)UnJ1

(0) · · ·UnJm
(0)|0i.

The set of nJ -collinear particles is defined by the anti-kt algorithm [74] which is used in

jet reconstruction. The phase space constraint imposed by the sequential clustering can

be quite complicated. Alternatively, here we require the angle �Rij between each pair of

collinear particles be smaller than the jet radius R,

�Rij ⌘
q
(�i � �j)2 + (⌘i � ⌘j)2 < R with i < j : 1, 2, · · · ,m. (2.24)

In the small R limit, the above requirement is equivalent to imposing the following step

functions,

⇥in(pJi , pJj ) ⌘ ✓

 
R

2 �
2pJi · pJj
p
Ji
T p

Jj
T

!
, (2.25)

which collectively is denoted by ⇥in({pJ}). The jet algorithm constraint for a coft gluon

with momentum pt is then equivalent to a cone jet algorithm since collinear particles are

clustered and define the jet direction nJ ,

⇥out(pt) ⌘ 1�⇥in(pt, nJ) = ✓

"
nJ · pt
n̄J · pt

�
✓

R

2 cosh ⌘J

◆
2
#
. (2.26)

By making the replacement in (2.21), (2.13) then gives the final factorized expression

d�

d2qTd
2pTd⌘JdyV

=
X

ijk

Z
d
2
xT

(2⇡)2
e
i~qT ·~xTSij!V k(~xT , ✏)Bi/N1

(⇠1, xT , ✏)Bj/N2
(⇠2, xT , ✏)

⇥Hij!V k(ŝ, t̂,mV , ✏)
1X

m=1

hJ k
m({nJ}, R pJ , ✏)⌦ Uk

m({nJ}, R ~xT , ✏)i. (2.27)

– 9 –

FactorizaLon	formula	(neglecLng	glauber	modes):
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Numerical	results

• NLL	resummaLon	is	consistent	with	the	LHC	data	(qT	&	ΔΦ)	
• TMD	factoriza0on	viola0on	effects	are	suppressed	at	the	LHC.	

• e.g.	perturbaLve	logs	from	Glauber	regions	beyond	NNLO

� �� �� �� �� �� ��
�

�

�

�

�

Figure 6. Comparison between the NLL cross section calculations with Pythia simulations, in
the high p

J
T case (top row) and the low p

J
T case (bottom row). In all the plots, the red curves

are the theoretical predictions with the scale choice in (5.1), and the error bands are shown as the
shaded regions. The histograms are the Pythia results at parton (dashed lines) and hadron (solid
lines) levels.

the LO result has an artificial kink structure. The kink structure comes from the neg-

ligence of two jet events with p
J
T < 30 GeV due to such a kinematic cut. Explicitly, at

LO pT and qT are the transverse momenta of leading and subleading jets, respectively.

When qT > 30 GeV, the lower limit of the pT integral is qT . On the other hand, for

qT < 30 GeV the lower limit is frozen at 30 GeV. Hence, we observe such kink structure

near qT ⇠ 30 GeV. The investigation of the kink and its treatment is beyond the scope of

this paper and left for future work.

We also compare our theoretical calculation of the azimuthal angle decorrelation ��

between the boson and the leading jet with the experimental result at
p
s = 7 TeV in [56].

In the numerical integration, we boost the tree-level partonic event such that the boson

and the leading jet have total transverse momentum ~qT as

~qT = qT (sin�q, cos�q). (5.7)

After performing this transformation, the Z boson and the leading jet are not back to back

in the transverse plane. Hence, we obtain the distribution of the azimuthal angle ��(Z, j1)

– 24 –

��� ��� ��� ��� ��� ���

���

�

��
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TMD	resummaLon	and	Gluon	Sivers	funcLon	at	the	EIC

• E.g.	heavy	quark	pair	producLon ep" ! e0cc̄X
<latexit sha1_base64="MaLMEsARjgi873ytiRuZUQKjdd0="></latexit>

(Kang,	Lee,	DYS	in	progress)

where the subscript “U” represents the unpolarized electron
beam and “T” indicates the transverse polarization of the
proton beam. ϕkS ¼ ϕkT − ϕS stands for the angular differ-

ence between the total dihadron transverse momentum k⃗T
and the polarized proton spin direction S⃗⊥. The amplitude of
the SSA is proportional to the corresponding Sivers function
divided by the unpolarized parton distributions.

III. MONTE CARLO SIMULATION SETUP

In this section, we will describe the setup for our event
generation. We use the PYTHIA 6.4 Monte Carlo (MC)
program [32] to simulate the unpolarized cross section as
expected at an EIC. The PYTHIA generator has been found
to reproduce the charged and open charm particle produc-
tion in the electron-proton collisions at HERA. The
comparison of the HERA data [33,34] and the output of
the tuned PYTHIA MC for charged particles and D" mesons
is shown in Figs. 2 and 3. Based on this reasonable
description of the unpolarized DIS cross section, we will
discuss our strategy to obtain the SSA based on weighting
the unpolarized results from PYTHIA.
In the simulation, we model the amplitude of the

asymmetry as an incoherent superposition of all contrib-
uting subprocess on an event-by-event basis. For every
event, a weighting factor is obtained according to the
kinematics and parton flavor as follows:

w ¼
ΔNfa=p↑ðx; k⊥; Q2Þ
2fa=pðx; k⊥; Q2Þ

: ð5Þ

At the end, the Monte Carlo asymmetry can be understood
as the weighted sum of the asymmetry weights from signal

(gluon-initiated channels) and background (quark-initiated
channels) processes similar to the strategy used in Ref. [35]:

AUT ¼ Rg
ΣNg
i wi

Ng
þRq

ΣNq
i wi

Nq
; ð6Þ

in which Ng and Nq indicate the number of gluon- and
quark-initiated events in the analyzed event sample. The
corresponding event fraction is thus obtained as Rg ¼
Ng=ðNg þ NqÞ and Rq ¼ Nq=ðNg þ NqÞ. In the experi-
ment, it is very hard to reliably separate different subpro-
cesses. Therefore, the fractions of events from different
subprocesses are modeled using PYTHIA in this analysis. A
validation of this weighting method against experimental
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FIG. 2. Charged particle transverse momentum distributions for
0 < η < 1.5 defined in the virtual photon-hadron center-of-mass
frame. The HERA data [33] for 5 GeV2 < Q2 < 10 GeV2,
0.0005 < xB < 0.002 with a beam energy 27.6 GeV ×
920 GeV are compared to the tuned PYTHIA results.
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FIG. 3. D" transverse momentum distributions for jηLabj < 1.8
defined in the virtual photon-hadron center-of-mass frame. The
HERA data [34] for 5 GeV2 < Q2 < 100 GeV2, 0.02 < y < 0.7
with the beam energy 27.6 GeV × 920 GeV are compared to the
tuned PYTHIA results.

FIG. 1. A schematic illustration of the kinematic variables
involved in this measurement.

ZHENG, ASCHENAUER, LEE, XIAO, and YIN PHYS. REV. D 98, 034011 (2018)

034011-4

• Open	charm	producLon	is	an	ideal	probe	to	tag	the	
Photon-Gluon-Fusion	processes,	can	be	used	to	probe	
spin	structures	for	the	gluon	TMD	(Boer	et	al.	’11;	Burton	
`12;	Zheng,	Aschenauer,	Lee,	Xiao,	Yin	`18,	…)

• In	the	small	kT	limit	

~k? = ~kc? + ~ks?
<latexit sha1_base64="1i4ZaN9DtRqm+QX5PgeGPQiuumU="></latexit>

kc? ⇠ (k2?/Q,Q, k?)
<latexit sha1_base64="9U2GyB/u9QrKUsBVDQrI3QvmJgw="></latexit>

ks? ⇠ (k?, k?, k?)
<latexit sha1_base64="9FJGwD5lXy5PJ5N0qUuGOfFPoDs="></latexit>

Collinear:

SoZ:

d�eP!eQQX ⇠
Z 2Y

i

d
2
ki?H

eg!eQQ̄
�
Q

2
�
�
(2)(~k1? + ~k2? � ~k?)fg (x1, k1?)SnnQnQ̄

(k2?)
<latexit sha1_base64="GxGAp1tLOxW7zz85W7UXiXUe30A="></latexit>

Fig	from	Aschenauer	et	al.	'18
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Research	plans	in	the	next	year

• Jet	physics	at	the	EIC:	jet	spectrum,	Jet	substructure	and	heavy	
flavor	jet		

• Global	event	shapes	at	the	EIC:	Non-perturbaLve	power	
correcLons
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• “Resumma0on	of	Boson-Jet	Correla0on	at	Hadron	Colliders”	Chien,	DYS	&	Wu	
JHEP1911(2019)025	

• “Momentum-space	Threshold	resumma0on	in	tW	produc0on	at	the	LHC”	Li,	Li,	
DYS,	Wang	JHEP1906(2019)125	

• “NLL`	resumma0on	of	jet	mass”	Balsiger,	Becher	&	DYS	JHEP1904(2019)020

• “Jet	TMD	and	Non-global	logs”	Parton	Shower	&	ResummaLon	2019,	Vienna,	
June	2019	

• “Overview	of	state-of-the-art	resummaLon	techniques	in	jet	physics”	JetTools	
2019,	Bergen,	May	2019	

• “SoZ	gluon	evoluLon	at	the	amplitude	level”		Circular	Electron-Positron	Collider	
workshop,	Oxford,	April	2019	

• “SoZ	gluon	evoluLon	beyond	leading	order”	SoZ-Collinear	EffecLve	Theory	
2019,	San	Diego,	March	2019

Recent	PublicaLons	

Recent	Talks	
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RG	evoluLon	and	resummaLon

d�

d2qT d2pT d⌘JdyV
=

X

ijk

Z
d2xT

(2⇡)2
ei~qT ·~xT e

R µ
µh

dµ̄
µ̄ �Hij!V k (µ̄)

Hij!V k(ŝ, t̂,mV , µh)

⇥

✓
x2
T ŝ

b20

◆�(Ci+Cj)F?(µ)

e
R µ
µb

dµ̄
µ̄ �Wij!V k (µ̄)

Sij!V k(~xT , µb)Bi/N1
(⇠1, xT , µb)Bj/N2

(⇠2, xT , µb)

⇥ e
R µ
µt

dµ̄
µ̄ �Uk (µ̄)+

R µ
µj

dµ̄
µ̄ �Jk (µ̄)

Uk
NG(µt, µj),

• ResummaLon	formula:

UNG(µt, µj) ⌘
1X

l=1

⌦
J l({n0}, R pT , µj)⌦

1X

m�l

Ulm({n}, µt, µj) ⌦̂ Um({n}, R ~xT , µt)
↵

• Non-global	logs	resummaLon:	(Becher,	Neubert,	Rothen	&	DYS	’16	PRL)

µh ⇠ Q, µb ⇠ b0/xT , µj ⇠ R pT , µt ⇠ Rb0/xT ,• Typical	scales:
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Factorization

• The operator for soft emissions from an amplitude with m hard 
partons 

Mm

soft Wilson lines along the directions of the 
energetic particles (color matrices)

hard scattering amplitude with m particles 
(vector in color space)

J
H
E
P
1
1
(
2
0
1
6
)
0
1
9

n⃗

α
δ = tan(α/2)

2Eout < βQ

Figure 1. Definition of the parameters δ and β of the dijet cross section. We use the thrust axis
n⃗ as the jet axis.

Weinberg [42]. Using the thrust vector as the jet axis leads to a simpler form of the

phase-space constraints and enables us to use existing two-loop results for the cone-jet soft

function obtained in [32, 33].

2.1 Wide-angle jets

Let us first consider wide-angle jets with δ ∼ 1. In this case the effective theory contains

only two relevant momentum regions, whose components (n · p, n̄ · p, p⊥) scale as follows:

hard: ph ∼ Q (1, 1, 1) ,

soft: ps ∼ Qβ (1, 1, 1) .
(2.3)

The hard mode describes the energetic particles inside the jet. Since we are dealing with

wide jets, the energetic radiation inside the jet covers a large angular range. It is thus not

collinear to n⃗ but has a homogenous scaling of all components. Given their large energy,

these particles can never go outside the jet, in contrast to the soft partons which can be

emitted inside or outside. Since there are no collinear singularities for large cone size, the

cross section is single-logarithmic, i.e. the leading logarithms have the form αn
s ln

nβ.

The factorization of an amplitude with m hard partons and an arbitrary number of soft

partons is of course well known. Each hard parton gets dressed with a Wilson line along

its direction. For an outgoing particle in the color representation Ti propagating along the

direction ni, the appropriate Wilson line is given by the path-ordered exponential

Si(ni) = P exp

(
igs

∫ ∞

0
ds ni ·Aa

s(sni)T
a
i

)
. (2.4)

The Wilson line Si is a matrix in color space, which acts on the color index of particle i.

The operator for the emission from an amplitude with m hard partons then takes the form

S1(n1)S2(n2) . . . Sm(nm) |Mm({p})⟩ , (2.5)

where nµ
i = pµi /Ei, and we use the compact notation {p} ≡ {p1, p2, . . . , pm}. This equation

is analogous to the factorization for amplitudes with coft particles [38], but while the coft

case involves splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})⟩.
In writing (2.5) we use the color-space formalism of [43, 44], in which amplitudes are treated

as n-dimensional vectors in color space. Since they act on different particles, the different

generators trivially commute [T a
i ,T

b
j ] = 0 for i ≠ j. The same is therefore true for the

– 6 –

n⃗

α
δ = tan(α/2)

2Eout < βQ

Figure 1. Definition of the parameters δ and β of the dijet cross section. We use the thrust axis
n⃗ as the jet axis.

Weinberg [42]. Using the thrust vector as the jet axis leads to a simpler form of the

phase-space constraints and enables us to use existing two-loop results for the cone-jet soft

function obtained in [32, 33].

2.1 Wide-angle jets

Let us first consider wide-angle jets with δ ∼ 1. In this case the effective theory contains

only two relevant momentum regions, whose components (n · p, n̄ · p, p⊥) scale as follows:

hard: ph ∼ Q (1, 1, 1) ,

soft: ps ∼ Qβ (1, 1, 1) .
(2.3)

The hard mode describes the energetic particles inside the jet. Since we are dealing with

wide jets, the energetic radiation inside the jet covers a large angular range. It is thus not

collinear to n⃗ but has a homogenous scaling of all components. Given their large energy,

these particles can never go outside the jet, in contrast to the soft partons which can be

emitted inside or outside. Since there are no collinear singularities for large cone size, the

cross section is single-logarithmic, i.e. the leading logarithms have the form αn
s ln

nβ.

The factorization of an amplitude with m hard partons and an arbitrary number of soft

partons is of course well known. Each hard parton gets dressed with a Wilson line along

its direction. For an outgoing particle in the color representation Ti propagating along the

direction ni, the appropriate Wilson line is given by the path-ordered exponential

Si(ni) = P exp

(
igs

∫ ∞

0
ds ni · Aa

s(sni)T
a
i

)
. (2.4)

The Wilson line Si is a matrix in color space, which acts on the color index of particle i.

The operator for the emission from an amplitude with m hard partons then takes the form

S1(n1)S2(n2) . . . Sm(nm) |Mm({p})⟩ , (2.5)

where nµ
i = pµi /Ei, and we use the compact notation {p} ≡ {p1, p2, . . . , pm}. This equation

is analogous to the factorization for amplitudes with coft particles [38], but while the coft

case involves splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})⟩.
In writing (2.5) we use the color-space formalism of [43, 44], in which amplitudes are treated

as n-dimensional vectors in color space. Since they act on different particles, the different

generators trivially commute [T a
i ,T

b
j ] = 0 for i ≠ j. The same is therefore true for the

– 6 –

(Becher, Neubert, Rothen & DYS `15)
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(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates

an integral over these directions and h. . . i denotes the color trace, which is taken after

– 2 –

• For	k	jets	process	at	lepton	collider Q0 Q

Q0 ⌧Q
• SoZ	funcLon:	

• Hard	funcLon:	integraLng	over	the	energies	of	the	hard	parLcles,	while	
keeping	their	direcLon	fixed	

• ⊗	indicates	integraLon	over	the	direcLon	of	the	energeLc	partons		

• 							takes	the	color	trace

from these Wilson lines

Sm({n}, Q0, µ) =

Z

Xs

X
h0|S†

1
(n1) . . . S

†
m(nm) |XsihXs|S1(n1) . . . Sm(nm) |0i ✓(Q0 � E out) ,

(2.3)

where the state Xs contains an arbitrary number of soft partons. The soft functions depend

on the energy Q0 of the radiation and implicitly also on the shape of the region ⌦out in

which the energy is measured. TheWilson-line matrix elements have ultraviolet divergences

which can be renormalized away and this induces a dependence on the renormalization scale

µ.

The hard function is given by the square of the hard-scattering amplitudes, together

with the phase-space constraints ⇥in

��
p
 �

which restrict the hard partons to the inside of

the jets,

Hm({n}, Q, µ) =
1

2Q2

X

spins

mY

i=1

Z
dEiE

d�3

i

(2⇡)d�2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q�

mX

i=1

Ei

⌘
�
(d�1)(~ptot)⇥in

��
p
 �

. (2.4)

For cone jets the phase-space constraint ⇥in

��
p
 �

is given by cones around the hard par-

tons. For recombination algorithms, on the other hand, the jet clustering constraints can

be quite complicated in general and can spoil factorization. However, they simplify in our

setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [28] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = �

mX

l=k

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, µ)

�
. (2.6)

and the resummed cross section is then

d�(Q,Q0) =
1X

l=k,m�l

⌦
Hl({n}, Q, µh)⌦Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)

↵
. (2.7)

The condition m � l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⌦̂ indicates that one has to integrate over the angles of

the (m � l) additional unresolved emissions. For the choice µh ⇠ Q and µs ⇠ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective

– 4 –

from these Wilson lines
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Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = �

mX

l=k

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

 Z
µh

µs

dµ

µ
�
H({n}, µ)

�
. (2.6)

and the resummed cross section is then

d�(Q,Q0) =
1X

l=k,m�l

⌦
Hl({n}, Q, µh)⌦Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)

↵
. (2.7)

The condition m � l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⌦̂ indicates that one has to integrate over the angles of

the (m � l) additional unresolved emissions. For the choice µh ⇠ Q and µs ⇠ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective
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from these Wilson lines

Sm({n}, Q0, µ) =

∫

Xs

∑
⟨0|S†

1(n1) . . . S
†
m(nm) |Xs⟩⟨Xs|S1(n1) . . . Sm(nm) |0⟩ θ(Q0 − E out) ,

(2.3)

where the states Xs contain an arbitrary number of soft partons. The soft functions depend

on the energyQ0 of the radiation and implicitly also on the shape of the region Ωout in which

the energy is measured. TheWilson-line matrix elements have ultraviolet divergences which

can be renormalized away and this induces a dependence on the renormalization scale µ.

The hard functions are given by the square of the hard-scattering amplitudes, together

with the phase-space constraints Θin
({

p
})

which restrict the m hard partons to the inside

of the jets,

Hm({n}, Q, µ) =
1

2Q2

∑

spins

m∏

i=1

∫
dEiE

d−3
i

(2π)d−2
|Mm({p})⟩⟨Mm({p})|

× (2π)d δ
(
Q−

m∑

i=1

Ei

)
δ(d−1)(p⃗tot)Θin

({
p
})

. (2.4)

For cone jets the phase-space constraint Θin
({

p
})

is defined by cones around the hard

partons. For recombination algorithms, on the other hand, the jet clustering constraints

can be quite complicated in general and can spoil factorization. However, they simplify in

our setup which considers the limit of hard partons together with (infinitely) soft radiation.

This situation was considered in [31] where it was shown that for anti-kT jets, the jet

boundary becomes cone-like so that the theorem (2.1) also applies to this case.

Since the cross section must be independent of the scale µ, the scale dependence among

the hard and soft functions must cancel. The one for the hard function is driven by the

RG equation

d

d lnµ
Hm({n}, Q, µ) = −

m∑

l=k

Hl({n}, Q, µ)ΓH
lm({n}, Q, µ) . (2.5)

This evolution equation is formally solved by the path ordered exponential

U({n}, µs, µh) = P exp

[ ∫ µh

µs

dµ

µ
ΓH({n}, µ)

]
, (2.6)

and the resummed cross section is then

dσ(Q,Q0) =
∞∑

l=k,m≥l

〈
Hl({n}, Q, µh)⊗Ulm({n}, µs, µh) ⊗̂Sm({n}, Q0, µs)

〉
. (2.7)

The condition m ≥ l arises because the anomalous dimension matrix is zero below the

diagonal, see below. The hat in ⊗̂ indicates that one has to integrate over the angles of

the (m − l) additional unresolved emissions. For the choice µh ∼ Q and µs ∼ Q0, the

hard and soft functions are free of large logarithms and can be expanded in the respective

coupling constants αs(µh) and αs(µs). At leading logarithmic accuracy, we only need these
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�(Q,Q0)

�0
= 1 +

↵s

2⇡
A+

⇣↵s

2⇡

⌘2 �
C2

FBF + CFCABA + CFTFnfBf

�

with

BF =32 ln2 δ ln2 β +
8

3

[

4 ln3 δ + 12 ln 2 ln2 δ + 9 ln2 δ − 6 ln2
(
1 + δ2

)
ln δ − π2 ln

(
1 + δ2

)

+ 12 ln2 2 ln δ − 18 ln 2 ln δ − 5

2
π2 ln δ + 24 ln δ − 9Li2

(
−δ2

)
+ 24 ln δ Li2

(
−δ2

)

− 12 ln
(
1 + δ2

)
Li2

(
−δ2

)
+ 12 ln 2Li2

(
−δ2

)
+ 6Li3

(
δ2

1 + δ2

)
− 6Li3

(
1

1 + δ2

)

− 3π2

4
+ π2 ln 2− 3

16
M [1]

F (δ)

]

ln β + cF2 (δ) ,

BA =
4

3

[

11 ln δ − π2

2
+ 3Li2(δ

4)

]

ln2 β +
4

3

[

11 ln2 δ − 67 ln δ

3
+

4δ4 ln δ

(1− δ4)2
+

1

1− δ4

+ 36 ln δ ln2
(
1− δ2

)
− 12 ln δ ln2

(
1 + δ2

)
+ 22 ln δ ln

(
1− δ2

)
− 5π2 ln

(
1− δ2

)

+ 22 ln δ ln
(
1 + δ2

)
− π2 ln

(
1 + δ2

)
− 4 ln3

(
1 + δ2

)
+ 33Li2

(
−δ2

)
+ 22Li2

(
δ2
)

+ 48 ln δ Li2
(
−δ2

)
− 12 ln

(
1− δ2

)
Li2

(
−δ2

)
− 36 ln

(
1 + δ2

)
Li2

(
−δ2

)

+ 12 ln 2Li2
(
−δ2

)
+ 24 ln δ Li2

(
δ2
)
+ 24 ln

(
1− δ2

)
Li2

(
δ2
)
+ 12 ln 2Li2

(
δ2
)

+ 12 ln
(
1− δ4

)
Li2

(
1− δ2

)
− 6Li3

(
1− δ4

)
+ 24Li3

(
1− δ2

)
− 36Li3

(
−δ2

)

− 36Li3
(
δ2
)
+ 24Li3

(
δ2

1 + δ2

)
− 12 ζ3 −

11π2

12
− 1

2
− π2 ln 2− 3

8
M [1]

A (δ)

]

ln β

+ cA2 (δ) ,

Bf =− 16

3
ln δ ln2 β − 8

3

[
1

1− δ4
+

4δ4 ln δ

(1− δ4)2
+ 4 ln(1− δ4) ln δ + 2 ln2 δ − 10

3
ln δ

+ 6Li2(−δ2) + 4Li2(δ
2)− π2

6
− 1

2

]

ln β + cf2 (δ) . (4.21)

We have chosen µ = Q for convenience. The quantities cF2 , c
A
2 and cf2 represent the unknown

constant (with respect to ln β) terms, which are functions of δ. The above expressions

extend our earlier result (3.35) to arbitrary cone size δ. To the best of our knowledge, we are

the first to provide analytical formulas for the logarithmic terms in cone-jet cross sections.

Such results can provide useful cross checks on numerical computations. In Figure 12,

we compare our predictions for dB/d ln β with the numerical results from Event2. The

fact that the results are consistent with each other in the small-β region provides a highly

nontrivial check of the two-loop logarithmic structure of our analytic expression for the

wide-angle jet cross section.

4.4 The small-δ limit

As a final check, we now evaluate all two-loop bare ingredients in the small-δ limit and

verify that they fulfill the factorization formulas (2.28) and (2.31). The hard function H2

is independent of the jet opening angle and the factorization (2.28) becomes trivial. Inter-

esting relations first arise for the hard function H
(1)
3 . In the small-δ limit, the contributions
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Q0 = Q� Figure 12. Comparison of our analytic results (solid lines) for the coefficients of the three color
structures in the two-loop coefficient dB(β, δ)/d ln β with numerical results (points with invisibly
small error bars) obtained using the Event2 event generator [44]. In the lower panels we show the
difference ∆B between Event2 and our result, which should be equal for small values of β. The
cone size is chosen as α = π/4, corresponding to δ ≈ 0.414.

for the hard function, and verify that the same matrix renders the soft function Sm with

m Wilson lines finite. We then give results for the one-loop anomalous dimensions and

show that the lowest-order RG evolution equation is equivalent to the BMS equation.

5.1 Renormalization at one-loop order

Let us write the expansion of the Z-factor defined in (2.35) in the form

Z
H
ij ({n}, Q, δ, ϵ, µ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+∞∑

n=j−i

(αs

4π

)n
z
(n)
i,j ({n}, Q, δ, ϵ, µ) ; if i ! j ,

0 ; if i > j ,

(5.1)

with z(0)i,j = 1. The entries zi,j are matrices in the color space of the partons in the

amplitude and its conjugate. We denote the color generators T a
i acting on i-th particle

in the amplitude on the left-hand-side of Hm in (2.14) as T a
i,L, and those acting on the

conjugate amplitude on the right-hand side as T a
i,R. Because of the structure of (2.15), the

roles of T a
i,L and T a

i,R are reversed for the case of the soft function: the generators T a
i,L act

on the right-hand side of Sm.

Let us now verify that ZH , which is introduced to absorb the divergences of the hard

function, can indeed be used to renormalize the one-loop soft function. If this is true, we

– 38 –

EVENT2	
two-loop	exp.

(Becher,	Neubert,	Rothen	&	DYS	’15)



Resummation effects in γ isolation at the LHC

• NLO: ~5% reduction, NNLO ~10%, resummed ~ 12%

• NGL dominates over global contribution: naive exponentiation (dashed)

• LL result suffers from large scale uncertainties
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Figure 10. Ratio of the pp ! � +X cross section with isolation to the inclusive one. Left: Ratio
as a function of t (or equivalently ✏�) for E

�
T > 400GeV. Right: Ratio for the ATLAS isolation

criterion (4.14) as a function of E�
T . In both plots we show the resummed result as well as its NLO

and NNLO expansions obtained using the approximation (4.11). The red uncertainty bands are
obtained by scale variations, see text.

which correspond to larger values of t in the figure. Resumming the global logarithms leads

to a much larger e↵ect, which cancels after accounting also for the non-global contribution.

By now there are many papers in the SCET literature which resum observables up to

non-global contributions. This example demonstrates that such estimates of higher-order

terms are not always reliable. In the present example this incomplete resummation leads

to worse predictions than no resummation at all.

Finally, let us analyze photon isolation in hadronic collisions. Of course, in this case

the same caveats apply that we discussed for gaps between jets: a full factorization analysis

for hadronic collisions is not yet available. We will therefore again work in the large-Nc

limit and resum the leading logarithms captured by evolving the hard function from the

scale µh ⇡ E
�

T
down to the soft scale µs ⇡ E

iso

T
. We need to evaluate the PDFs at the hard

scale µf = µh, as explained in the gaps-between-jets case.

The small angular size R of the veto region suppresses higher-order corrections and the

overall e↵ect of the isolation cone is therefore moderate. At the same time, the typical scale

ratios ✏� that arise in experimental measurements can be quite large. We have discussed

in Section 4.1 that the global logarithms scale as ↵n
s R

2n lnn(✏�), while the non-global ones

scale as ↵
n
s R

2 lnn�1(R) lnn(✏�), since they involve only a single gluon in the veto region.

For small R, the non-global logarithms completely dominate the cross section. In order

to verify this, we extract large logarithms up to two-loop from our parton-shower code.

Explicitly, as is shown in [2], the first two coe�cients in the expansion

�(t)/�0 = 1 + S(1)
t+ S(2)

t
2 + . . . (4.15)

in the shower time (2.11) take the form

S(1) =� 4Nc

Z

⌦

3outW
3

12,

– 20 –

Figure 9. E↵ect of the isolation cut in e
+
e
� ! � + X. The plot shows a comparison of the

resummed result (red line) with the one-loop contribution (orange line) and the global logarithms
(dashed purple line).

For a fixed cone-energy Eiso, the energy integration produces a divergences with an asso-

ciated logarithm, which gets multiplied by the angular area of the cone, in line with the

discussion in Section 4.1. The situation is interesting for isolation cones because the loga-

rithms are typically large (experiments often restrict the isolation energy to a few GeVs),

while the area tends to be small. If we substitute Eiso ! Eiso(�) from (4.8) into (4.12),

we can compute the soft function for the smooth-cone. In the approximation (4.11), we

find that the smooth-cone result is obtained from the fixed cone one-loop result using the

substitution

ln
✏�E�

µ
�! ln

✏�e
�n

E�

µ
. (4.13)

In other words, the smooth-cone isolation is more restrictive than fixed-cone isolation by a

factor en. A computation such as [55] which uses smooth-cone isolation with ✏� = 0.1 and

n = 2, therefore has the same size logarithms as a fixed-cone computation with ✏� = 0.01.

For photon energies of a few hundred GeVs, this indeed matches up with the fixed-cone

isolation criterion

E
iso

T = 4.8GeV + 0.0042ET

� (4.14)

used in the ATLAS analysis [59]. ATLAS uses a cone of R = 0.4 in the rapidity and

azimuthal-angle plane. A particle is considered to be inside the cone (and therefore belongs

to the “out”-region), if �y
2 +��

2
< R

2, where �y is the rapidity di↵erence and �� the

di↵erence of the azimuthal angle between the particle and the photon.

As we discussed in Section 4.1 above, the two-loop non-global and global logarithms

can cancel each other out and for photon isolation results displayed in Figure 9, this e↵ect

is quite pronounced. In this plot we consider e
+
e
� ! � +X with an isolation cone with

half-angle �0 = ⇡/4 and compare the resummed result with the one-loop logarithm and

with the global contribution, which is given by the exponential of the one-loop logarithm.

We observe that higher-order e↵ects are quite small down to relatively low isolation energies
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criterion (4.14) as a function of E�
T . In both plots we show the resummed result as well as its NLO

and NNLO expansions obtained using the approximation (4.11). The red uncertainty bands are
obtained by scale variations, see text.

which correspond to larger values of t in the figure. Resumming the global logarithms leads

to a much larger e↵ect, which cancels after accounting also for the non-global contribution.

By now there are many papers in the SCET literature which resum observables up to

non-global contributions. This example demonstrates that such estimates of higher-order

terms are not always reliable. In the present example this incomplete resummation leads

to worse predictions than no resummation at all.

Finally, let us analyze photon isolation in hadronic collisions. Of course, in this case

the same caveats apply that we discussed for gaps between jets: a full factorization analysis

for hadronic collisions is not yet available. We will therefore again work in the large-Nc

limit and resum the leading logarithms captured by evolving the hard function from the

scale µh ⇡ E
�

T
down to the soft scale µs ⇡ E

iso

T
. We need to evaluate the PDFs at the hard

scale µf = µh, as explained in the gaps-between-jets case.

The small angular size R of the veto region suppresses higher-order corrections and the

overall e↵ect of the isolation cone is therefore moderate. At the same time, the typical scale

ratios ✏� that arise in experimental measurements can be quite large. We have discussed

in Section 4.1 that the global logarithms scale as ↵n
s R

2n lnn(✏�), while the non-global ones

scale as ↵
n
s R

2 lnn�1(R) lnn(✏�), since they involve only a single gluon in the veto region.

For small R, the non-global logarithms completely dominate the cross section. In order

to verify this, we extract large logarithms up to two-loop from our parton-shower code.

Explicitly, as is shown in [2], the first two coe�cients in the expansion

�(t)/�0 = 1 + S(1)
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2 + . . . (4.15)

in the shower time (2.11) take the form
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Figure 9. E↵ect of the isolation cut in e
+
e
� ! � + X. The plot shows a comparison of the

resummed result (red line) with the one-loop contribution (orange line) and the global logarithms
(dashed purple line).

For a fixed cone-energy Eiso, the energy integration produces a divergences with an asso-

ciated logarithm, which gets multiplied by the angular area of the cone, in line with the

discussion in Section 4.1. The situation is interesting for isolation cones because the loga-

rithms are typically large (experiments often restrict the isolation energy to a few GeVs),

while the area tends to be small. If we substitute Eiso ! Eiso(�) from (4.8) into (4.12),

we can compute the soft function for the smooth-cone. In the approximation (4.11), we

find that the smooth-cone result is obtained from the fixed cone one-loop result using the

substitution

ln
✏�E�

µ
�! ln

✏�e
�n

E�

µ
. (4.13)

In other words, the smooth-cone isolation is more restrictive than fixed-cone isolation by a

factor en. A computation such as [55] which uses smooth-cone isolation with ✏� = 0.1 and

n = 2, therefore has the same size logarithms as a fixed-cone computation with ✏� = 0.01.

For photon energies of a few hundred GeVs, this indeed matches up with the fixed-cone

isolation criterion

E
iso

T = 4.8GeV + 0.0042ET

� (4.14)

used in the ATLAS analysis [59]. ATLAS uses a cone of R = 0.4 in the rapidity and

azimuthal-angle plane. A particle is considered to be inside the cone (and therefore belongs

to the “out”-region), if �y
2 +��

2
< R

2, where �y is the rapidity di↵erence and �� the

di↵erence of the azimuthal angle between the particle and the photon.

As we discussed in Section 4.1 above, the two-loop non-global and global logarithms

can cancel each other out and for photon isolation results displayed in Figure 9, this e↵ect

is quite pronounced. In this plot we consider e
+
e
� ! � +X with an isolation cone with

half-angle �0 = ⇡/4 and compare the resummed result with the one-loop logarithm and

with the global contribution, which is given by the exponential of the one-loop logarithm.

We observe that higher-order e↵ects are quite small down to relatively low isolation energies
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which correspond to larger values of t in the figure. Resumming the global logarithms leads

to a much larger e↵ect, which cancels after accounting also for the non-global contribution.

By now there are many papers in the SCET literature which resum observables up to

non-global contributions. This example demonstrates that such estimates of higher-order

terms are not always reliable. In the present example this incomplete resummation leads

to worse predictions than no resummation at all.

Finally, let us analyze photon isolation in hadronic collisions. Of course, in this case

the same caveats apply that we discussed for gaps between jets: a full factorization analysis

for hadronic collisions is not yet available. We will therefore again work in the large-Nc

limit and resum the leading logarithms captured by evolving the hard function from the

scale µh ⇡ E
�

T
down to the soft scale µs ⇡ E

iso

T
. We need to evaluate the PDFs at the hard

scale µf = µh, as explained in the gaps-between-jets case.

The small angular size R of the veto region suppresses higher-order corrections and the

overall e↵ect of the isolation cone is therefore moderate. At the same time, the typical scale

ratios ✏� that arise in experimental measurements can be quite large. We have discussed

in Section 4.1 that the global logarithms scale as ↵n
s R

2n lnn(✏�), while the non-global ones

scale as ↵
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s R

2 lnn�1(R) lnn(✏�), since they involve only a single gluon in the veto region.

For small R, the non-global logarithms completely dominate the cross section. In order

to verify this, we extract large logarithms up to two-loop from our parton-shower code.

Explicitly, as is shown in [2], the first two coe�cients in the expansion

�(t)/�0 = 1 + S(1)
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For a fixed cone-energy Eiso, the energy integration produces a divergences with an asso-

ciated logarithm, which gets multiplied by the angular area of the cone, in line with the

discussion in Section 4.1. The situation is interesting for isolation cones because the loga-

rithms are typically large (experiments often restrict the isolation energy to a few GeVs),

while the area tends to be small. If we substitute Eiso ! Eiso(�) from (4.8) into (4.12),

we can compute the soft function for the smooth-cone. In the approximation (4.11), we

find that the smooth-cone result is obtained from the fixed cone one-loop result using the

substitution

ln
✏�E�

µ
�! ln

✏�e
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. (4.13)

In other words, the smooth-cone isolation is more restrictive than fixed-cone isolation by a

factor en. A computation such as [55] which uses smooth-cone isolation with ✏� = 0.1 and

n = 2, therefore has the same size logarithms as a fixed-cone computation with ✏� = 0.01.

For photon energies of a few hundred GeVs, this indeed matches up with the fixed-cone

isolation criterion

E
iso

T = 4.8GeV + 0.0042ET

� (4.14)

used in the ATLAS analysis [59]. ATLAS uses a cone of R = 0.4 in the rapidity and

azimuthal-angle plane. A particle is considered to be inside the cone (and therefore belongs

to the “out”-region), if �y
2 +��

2
< R

2, where �y is the rapidity di↵erence and �� the

di↵erence of the azimuthal angle between the particle and the photon.

As we discussed in Section 4.1 above, the two-loop non-global and global logarithms

can cancel each other out and for photon isolation results displayed in Figure 9, this e↵ect

is quite pronounced. In this plot we consider e
+
e
� ! � +X with an isolation cone with

half-angle �0 = ⇡/4 and compare the resummed result with the one-loop logarithm and

with the global contribution, which is given by the exponential of the one-loop logarithm.

We observe that higher-order e↵ects are quite small down to relatively low isolation energies
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Resummation by RG evolution

Wilson coefficients fulfill renormalization 
group (RG) equations 

  
1. Compute Hm at a characteristic high 

scale µh ~ Q  

2. Evolve Hm to the scale of low energy 
physics µl ~ Q0  

3. Compute Sm at a µs~ Q0 

Avoids large logarithms αsn lnn(Q/Q0).
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treatment which is based on RG evolution in Soft-Collinear E↵ective Theory (SCET) [4–6]

(see [7] for a review). Our starting point is the factorization theorem which separates the

hard radiation inside the jets (or outside the isolation cone) from the soft radiation. The

soft radiation is driven by Wilson lines along the directions of the hard partons in the

process. Since there are contributions involving any number of hard partons, we end up

with operators with an arbitrary number of Wilson lines and these operators mix under

renormalization. The corresponding RG equation is complicated, but we will show that it

takes the form of a recursive equation which can be solved using a parton shower Monte-

Carlo (MC) program, which at leading-log accuracy and large-Nc is equivalent to the one

used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.

The problem at hand provides an explicit example of a shower equation derived from first

principles for which it is clear what ingredients are needed to resum sub-leading logarithms.

The leading logarithms can be obtained by starting from the tree-level amplitudes and

running the parton shower to generate the logarithmically enhanced terms. Using a tree-

level event generator, this resummation can be automated. We have written a dedicated

parton shower code to perform the resummation and use the MadGraph5_aMC@NLO

framework [12] to generate the necessary tree-level amplitudes. We then study exclusive

jet and isolation-cone cross sections. In particular, we give numerical results for dijet

production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
1X

m=k

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates
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Resummation by RG evolution

Wilson coefficients fulfill renormalization 
group (RG) equations 

  
1. Compute Hm at a characteristic high 

scale µh ~ Q  

2. Evolve Hm to the scale of low energy 
physics µl ~ Qβ  

Avoids large logarithms αsn lnn(β) of scale 
ratios which can spoil convergence of 
perturbation theory.
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used by Dasgupta and Salam. An advantage of our treatment is that the RG equation is

not limited to leading logarithmic accuracy and we briefly discuss which ingredients and

modifications will be necessary to reach higher precision. There has been a lot of recent

work [8–11] on the general structure of parton showers and how to increase their accuracy.
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production with a gap between jets and compare to ATLAS measurements and theoretical

predictions [13] based on the BMS equation [14]. We also study isolated photon production

and compute the logarithms of ✏� , the energy fraction inside the isolation cone.

The remainder of this paper is organized as follows. In Section 2 we review the factor-

ization theorem for jet cross sections with gaps or isolation cones. In Section 3 we will show

that RG evolution of the associated Wilson coe�cients is equivalent to a parton shower,

and we give the necessary ingredients for LL resummation. In Section 4 we will apply

the shower code to obtain some phenomenological predictions, namely gap fraction of dijet

production and isolation cone cross section. We summarize our results and provide some

further discussions in Section 5.

2 Factorization for jet cross sections with gaps or isolation cones

The factorization formula for lepton-collider processes with k jets which takes the form

[1, 2]

d�(Q,Q0) =
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m=k

⌦
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. (2.1)

Here Q denotes the large energy inside the jets, while Q0 denotes the small energy outside

the jets in an angular region ⌦out. The factorization theorem is the leading term in an

expansion of the cross section in � = Q0/Q. Both the soft and hard functions depend on

the directions {n} = {n1, . . . , nm} and colors of the hard partons. The symbol ⌦ indicates

an integral over these directions and h. . . i denotes the color trace, which is taken after
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Resummation in SCET

the MadGraph5 aMC@NLO event generator [26]. This provides an automated frame-

work to perform the LL resummation for single-logarithmic observables. However, collider

observables are typically double logarithmic. The LL in the jet mass distribution, for ex-

ample, are ↵n
s ln

2n
⇢. Even for non-global observables, these double logarithmic terms have

a simple structure, and they can be factored out and treated separately. In the parton

shower framework, we therefore subtract these “global” contributions and exponentiate

them manually, as Dasgupta and Salam did in their original paper on NGLs [27]. Given

their di↵erent nature, it is interesting to analyze both the interjet energy flow and the jet

mass as examples and we will present LL0 and NLL0 improved results for single logarithmic

and double logarithmic observables, separately. A second motivation to also analyze the

jet mass, is that there are LEP measurements to which we can compare to, in contrast

to the interjet energy flow. Unfortunately, the typical jet mass at LEP jet is quite low

M . 10GeV, which translates to a scale of the soft radiation of Q0 ⇠ M
2
/Q . 1GeV so

that non-perturbative e↵ects are very important in the peak region of the distribution.

Our paper is organized as follows. In the next section, we will discuss LL0 resummation

for interjet energy flow and show how one implements the one-loop corrections to the hard

and soft functions. We then move to the jet mass distribution in Section 3, focussing on the

di↵erences to the single-logarithmic case. We will in particular show how to subtract global

logarithms in the parton shower and in the soft function. After presenting numerical results

in Section 4 and comparing to LEP data and PYTHIA results, we conclude in Section 5.

2 Interjet energy flow at LL0 accuracy

The perturbative expansion of the interjet energy flow in (1.1) su↵ers from large logarithms

of the ratio of the hard scale Q and the soft scale Q0. To resum these, one solves the RG

equation of the hard function and evolves it from its characteristic scale µh ⇠ Q down to

a soft scale µs ⇠ Q0. This yields the RG-improved expression [8]

�(Q,Q0) =
1X

l=2

⌦
Hl({n0}, Q, µh)⌦

1X

m�l

Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)
↵
, (2.1)

where the evolution factor is defined as a path-ordered exponential of the anomalous di-

mension

U({n}, µs, µh) = P exp

Z
µh

µs

dµ

µ
�H({n}, µ)

�
. (2.2)

The RG-evolution generates additional partons and maps the l-parton configuration along

the directions {n0} = {n1, . . . , nl} into an m-parton final state along the directions {n} =

{n1, . . . , nl, nl+1, . . . , nm}. The symbol ⌦̂ in (2.1) indicates the integral over the directions

of the additional m� l partons generated in the evolution.

At the leading logarithmic level, we only need the one-loop anomalous dimension and

can rewrite the exponent as

Z
µh

µs

dµ

µ
�H =

Z
↵s(µh)

↵s(µs)

d↵

�(↵)

↵

4⇡
�(1) =

1

2�0
ln

↵s(µs)

↵s(µh)
�(1) ⌘ t�(1)

. (2.3)
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the MadGraph5 aMC@NLO event generator [26]. This provides an automated frame-
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for interjet energy flow and show how one implements the one-loop corrections to the hard
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di↵erences to the single-logarithmic case. We will in particular show how to subtract global

logarithms in the parton shower and in the soft function. After presenting numerical results
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