

Precision Jet (Event) Substructure

Yang-Ting Chien

YITP-CFNS Fellow, Stony Brook University (since September, 2019)

In collaboration with George Sterman

December 5, 2019

Outline

- Jet substructure
 - New observables and precise theory understanding
 - New techniques for signal searches
- collinear drop (arXiv: 1907.11107)
- two-particle correlation neural network (2PCNN) (arXiv:1911.02020)
- Future plans for the EIC
 - flattened jet angularity (work in progress with George)
 - quantum jet classification (work in progress)
 - polarization in jet substructure
 - ► ...
- Recent publications and talks

Challenge and opportunity in nuclear and particle physics simulations

- *pp* event simulation paradigm
 - parton shower
 - underlying events
 - hadronization
- Burning issues
 - quark-gluon plasma signature in pp, pA and AA collisions
 - hydrodynamics and collectivity
 - understanding initial state dependence from EIC studies is essential
- Concrete strategy to study any stage of collider event = jet substructure

Precision jet (event) substructure

- Different observables are sensitive to physics at different energy scales
- Essential to exploit all types (quantum numbers) of probes in all collision systems: quark jet, gluon jet, heavy flavors, boosted bosons, bound states... in e⁺e⁻, ep, eA, pp, pA, AA, ... (proposal: p

 p and p

 A are also useful. A

 A is too hard at the moment)

Precise QCD calculations using soft-collinear effective theory (SCET)

LARGE LOGS

- Large logarithms of scale ratios (e.g. log mass/energy) appear in perturbative calculations and fixed-order calculations break down
 - All-order resummation is necessary

RESUM USING RG

- Large logarithms can be resummed using renormalization group evolution between characteristic scales in effective field theories
 - Factorization and evolution = resummation
- SCET factorizes hard, jet and soft radiation
 - Hard matching coefficients describe hard scattering processes
 - Collinear Wilson lines describe radiation in the collinear limit
 - Soft Wilson lines along jet directions describe soft radiation in all angles

Soft Drop

Dasgupta, Fregoso, Marzani, Salam, JHEP09(2013)029 Larkoski, Marzani, Soyez, Thaler, JHEP05(2014)146

- Tree-based procedure to drop soft radiation
 - Recluster a jet using Cambridge-Aachen algorithm into an angular-ordered tree
 - For each branching, consider the p_T of each branch and the angle θ between branches
 - Soft drop condition: drop the soft branch if $z < z_{\text{cut}} (\theta/R)^{\beta}$, where z is the momentum fraction of the soft branch

Collinear Drop using soft drop + anti soft drop

Chien, Stewart, 1907.11107

• $\Delta m^2 = m^2_{\mathrm{SD}_1} - m^2_{\mathrm{SD}_2}$ probes the soft radiation within the ring

• Phase space constraints on soft emissions with $(z, \theta) = (momentum fraction, angle)$,

$$z\theta^2 \approx \frac{\Delta m^2}{E_J^2} , \qquad z_{\text{cut 1}} \Big(\frac{\theta}{R}\Big)^{\beta_1} \lesssim z \lesssim z_{\text{cut 2}} \Big(\frac{\theta}{R}\Big)^{\beta_2}$$

Relevant degrees of freedom have characteristic energies E_{cs_i} and angles Θ_{cs_i} .

Highlighted in Barbara Jacak's Quark Matter 2019 opening talk

Progress is made with expertise in both nuclear and particle physics

Soft drop by turning off collinear drop

Previous soft drop work: Larkoski et al '16, Marzani et al '17, Kang et al '18 ATLAS: PRL 121.092001, CMS: JHEP11(2018)113

- Soft drop reduces sensitivity to soft physics
- Bands correspond to next-to-leading log (NLL) calculation with uncertainty estimated by scale variation. Good agreement with data and theory precision needs to be improved.

Disentangling effects from hadronization and underlying events

- Significant difference between Pythia and Vincia is observed
- Impressive agreement between Vincia and analytic calculation
- Underlying event effects can be suppressed while keeping sensitivity to hadronization
- Or, one can enhance the sensitivity to underlying events

Promising applications for scrutinizing QCD phase space of EIC

Two-particle correlation neural network (2PCNN)

Chen, Chien, 1911.02020

- Deciphering complex jet information requires a physical jet representation: we use two-particle correlation as basic information elements
- The rise of machine learning gives powerful tools for extracting physics features
- We construct a novel neural network model suitable for nuclear and particle physics studies

Machine learning works with (or, for) physical analysis

Promising applications for enhancing sensitivities to QCD effects at EIC

	2PCNN	(E-flow)	2PCN	N(full)	T-jet model
Task	ACC	AUC	ACC	AUC	ACC AUC
W vs quark	0.881	0.945	0.881	0.946	$0.880 \ 0.945$
Higgs vs quark	0.873	0.939	0.959	0.993	$0.866 \ 0.934$
top vs quark	0.900	0.962	0.929	0.978	$0.900 \ 0.963$
W^+ vs W^-	0.505	0.502	0.757	0.839	$0.502 \ 0.502$
quark vs gluon	0.738	0.810	0.748	0.823	$0.732 \ 0.802$

- The practical: excellent classification performance and feature extraction quantified by AUC (area under ROC curves) and ACC (accuracy)
- The conceptual: neural network model combined with physical analysis allows us to identify key physics observables
- ► 2PCNN identifies the two-prong structure and color-singlet isolation of *W* jets as shown in the relative angle ΔR and p_T asymmetry $\mathcal{A} = \Delta p_{Ti} / \sum p_{Ti}$ of 2PCs and the relation to energy-energy correlators

Recent publications

- K. -F. Chen and Y. -T. Chien, "Deep learning jet substructure from two-particle correlation," arXiv:1911.02020
- Y. -T. Chien and I. Stewart, "Collinear drop," arXiv:1907.11107
- Y. -T. Chien, D. Shou and B. Wu, "Resummation of boson-jet correlation at hadron colliders," JHEP 1911, 025 (2019)
- Y. -T. Chien, "Confronting jet quenching with jet grooming: jet mass distributions in heavy ion collisions," PoS HardProbes2018 (2019) 098
- Y. -T. Chien, "Heavy ion jet physics studies using precision jet substructure and quark-gluon jet classification," PoS HardProbes2018 (2019) 097
- Y. -T. Chien, D. Kang, K. Lee and Y. Makris, "Subtracted cumulants: mitigating large background in jet substructure," Phys. Rev. D 100, no. 7, 074030 (2019)

Jet quenching predictions for different jet radii

Great agreement with CMS data announced at Quark Matter 2019

Jet R_{AA} : jet radius scan

SCET_G w/o coll. energy loss:

- SCET_G models interaction of hard partons with soft gluons
- Great agreement with data

Y.-T. Chien (Stony Brook)

Recent and future talks

- "Deep Learning Jet Substructure from Two Particle Correlation", ML4Jets workshop, 01/13/2020, New York University.
- "Deep Learning Jet Substructure from Two Particle Correlation", Particle Physics in Computing Frontiers, 12/11/2019, Institute for Basic Science, Daejeo, Korea. Invited talk.
- "Collinear Drop", XLIX International Symposium on Multiparticle Dynamics, 09/09/2019, Hotel Santa Fe, New Mexico. Invited talk.
- "Latest Development in Jet Substructure Techniques", Meeting of the Division of Particles & Fields of the American Physical Society, 07/30/2019, Northeastern University. Invited talk.
- "Collinear Drop", 11th International Workshop on Boosted Object Phenomenology, Reconstruction and Searches (BOOST 2019), 07/25/2019, MIT.
- "Collinear Drop Quark/Gluon Jet Substructure", 13th Particle Physics Phenomenology workshop (PPP13), 06/04/2019, National Taiwan Normal University, Taipei, Taiwan.
- "Probing Heavy Ion Collisions Using Precision Jet Substructure", High Energy Physics Seminar, 05/30/2019, National Taiwan Normal University, Taipei, Taiwan. Invited talk.
- "Collinear Drop", 16th Annual Workshop on Soft-Collinear Effective Theory (SCET2019), 03/26/2019, UC San Diego. Invited talk.
- "Searching for New QCD Signatures in Soft Jet Substructure", Joint BNL and CFNS seminar, February 7th, 2019, Brookhaven National Laboratory. Invited talk.
- ▶ "Collinear Drop", 4th Santa Fe Jets and Heavy Flavor Workshop, 01/30/2019, UC Los Angeles.