

TPC Space Charge Distortions in sphenix and **Onward Ross Corliss** Joined CFNS September, 2019 With Abhay Deshpande, Tom Hemmick

Research Projects

- Previously:
 - DarkLight
 - MVTX detector for sPHENIX
- Now:
 - Analyzing forward π⁰s in PHENIX
 - Developing TPC calibration and spacecharge correction scheme for sPHENIX

Stony Brook University

Outer HCAL SC Magnet Inner HCAL EMCAL TPC INTT and MVTX

> • All read out at 15kHz readout to match RHIC collision rate

SPHENIX

SPHENIX TPC

- Primary measure of track momentum
- Ungated, GEM-based gain stage
- Capable of continuous readout
- Need to handle distortions in high luminosity running

Stony Brook University

adout s in

SPHENIX as "D1D" at EIC

- Extension of sPHENIX proposed as Day-1 Detector for EIC
- Same TPC would be used (with some changes)
- sPHENIX operation prepares us for EIC implementation

Sources of Distortions

To get correct origin of charge, reconstruction must account for:

- Imperfections/misalignments in EM fields
- Primary ions from tracks
- IBF from electrons in avalanche region Stony Brook University

Sources of Distortions

To get correct origin of charge, reconstruction must account for:

- Imperfections/misalignments in EM fields ~static
- Primary ions from tracks ~averaged
- IBF from electrons in avalanche region ~compressed and variable

Stony Brook University

- Back propagate through "same" field
- Challenge: Do it fast enough for timely reconstruction

Stony Brook University

Correcting Distortions

fed into reconstruction algorithm

Propagation Model

- Divide TPC into Pieces of Cake (POC) grid
- Pre-compute cell-to-cell Green's functions
- Use SC distribution to sum field vector per cell
- Propagate each electron using 2nd order Langevin
 - Depends only* on integrals of fields along z.
 - Can interpolate between r,Φ adjacent cells

Stony Brook University

Progress and Goals

 Now: Reconstruction framework developed, convergence tested using simpler boundary conditions

• December: Develop idealized case in full sPHENIX model

 2020: Develop full calibration framework, study simulated calibration performance with diffuse and directed lasers

Summary

- Developing scheme to pr of TPC field distortions
- Leads to development of calibration and correction schemes applicable to high luminosity (EIC) environments where TPC is an attractive detector option

Developing scheme to properly account for wide class

Presentations and Publications

- Y. Wang, R. Corliss, R. G. Milner, C. Tschalär, and J. C. Bernauer. A helical-shape Nucl. Instrum. Meth., A935:1–7, 2019, 1812.01369.
- Solenoidal Magnet for Use with a Megawatt Electron Beam. Nucl. Instrum. Meth., A939:46-54, 2019, 1903.02648.
- Nucl. Instrum. Meth., A922:157–160, 2019, 1811.12196.

tony Brook University

• June 2019 Status and Goals of the sPHENIX Detector (RHIC AGS Users Meeting, BNL)

• April 2019 sPHENIX: Status and Goals of RHIC's New Detector (LNS Lunch Seminar, MIT)

scintillating fiber trigger and tracker system for the DarkLight experiment and beyond.

• S. Lee, R. Corliss, et al. Design and Operation of a Windowless Gas Target Internal to a

R. Johnston et al. Realization of a Large-Acceptance Faraday Cup for 3 MeV Electrons.