

A New Paradigm for Dark Matter Search at the LHC

Yangyang Cheng BNL Particle Physics Seminar 12/05/2019

Why Dark Matter?

What is Dark Matter?

Yangyang Cheng | Seminar@BNL

How do We Look for Dark Matter?

- Physics motivation
- Experimental overview
- Search for WIMP dark matter
- Dark matter beyond WIMPs
- Future dark sector search

Experimental Searches for DM

Three *complementary* methods for dark matter particle detection:

Fermi-LAT

The CMS Detector

Collider Search for WIMP DM

"Conventional" searches for DM have focused on Weakly Interacting Massive Particles:

- fit relic density
- predicted in BSM theories

WIMP-pair recoil against one or more visible particles X \rightarrow "mono-X" signature X=jet, γ , W, Z, ...

No WIMPs Found (outside Congress) yet

How do We Look for Dark Matter?

- Physics motivation
- Experimental overview
- Search for WIMP dark matter
- Dark matter beyond WIMPs
- Future dark sector search

Case for a Complex Dark Sector

Why should the visible world have all the fun?

Why should the dark world be any less complicated?

- \rightarrow Extend SM symmetries to new hidden symmetry with new hidden particles:
 - SM particles neutral under hidden symmetry
 - Mediator particle(s) for SM-dark sector
 - Some dark sector (DS) particles are stable: good dark matter candidate
 - − Some DS particles are meta-stable: decay back to SM → experimental observables!

The Elusive Dark Sector

<u>Direct detection is not sensitive</u> when energy transfer in DM-SM scattering is small:

- Scattering is inelastic
- DM mass is very small
- DM-SM coupling is very small when mediated through a complex dark sector

Cosmic connection

- <u>Bypass</u> stringent constraints on WIMP-type DM <u>from indirect detection</u>
- Fit to observed data
- Explain the evolution of the early universe incl. but not limited to freeze-out model

Search for Dark Sector at Collider

The dark sector may be accessed at a high energy collider through narrow "portal", creating new dark sector particles that can decay *slowly* back to SM particles → LHC is a unique machine for discovery!

Striking collider signature:

- very different from conventional "mono-X" searches for WIMP DM
- \rightarrow a <u>new paradigm</u> for DM search @ LHC

Long Live the Dark Side

Same principles apply to the dark sector:

small couplings and no definite mass scale \rightarrow <u>long-lived</u>* particles (LLPs)!

* Lifetime upper bound from BBN: O(0.1)sec \rightarrow free parameter for collider search!

Search for Long-lived Particles @ CMS

Searches for Dark Sector @ CMS

<u>Dark Shower</u>

Collider Signature: Dark Shower

If dark sector has QCD-like structure: Dark baryon stable \rightarrow DM candidate Dark meson decays

- very light: leptons/ photons
- O(10GeV): quarks, mostly b's
- lifetime as free parameter
- \rightarrow Extremely rich final states
- Signature-driven search with broad reinterpretation value

Other well-motivated models (e.g. twin-Higgs) can also create a dark shower at collider.

Dark Shower: Emerging Jets

Dark Shower: Displaced Photons

Search for Displaced Photons

Dark Shower: Other Final States

Semi-visible Jet:

- A O(TeV), leptophobic gauge boson mediator
- Dark sector with a QCD-like structure.
- Showering from the dark quark observed as a hadronic jet that also contains invisible particles

 \rightarrow Large-R jets with pT aligned with E_T^{miss}

Light dark mesons, from Hidden Valley or Higgs exotic decay, can also decay to muons: → Challenging for ATLAS/CMS with soft muons → LHCb has unique advantages in certain phase spaces with its forward coverage & (no-)trigger

Searches for Dark Sector @ CMS

Collider Signature: Lepton Jets

Inelastic Dark Matter: Theory

Heavy mass eigenstate χ^2

- abundant in early universe
- ightarrow efficient co-annihilation
- depleted in current universe
- \rightarrow evades indirect detection
- inelastic scattering
- ightarrow bypass existing limits for WIMPs
- large-ish (>100keV) mass splitting
- → <u>evades most</u> direct detection

→ Both DM mass eigenstates can be produced at collider

→ The LHC can probe parameter space that *fits relic density*!

Inelastic Dark Matter: Collider Signature

Search for Inelastic Dark Matter

Self-Interacting Dark Matter: Model

Cosmic connection:

• Self-interacting dark matter is proposed to reconcile astrophysical observations.

- The dark force mediator, a dark photon, is much lighter than dark matter particle
- Dark matter bound states can be produced at collider with the same dark photon mediator
 - Complementary to direct detection

Collider signature:

1st collider search

- The heavy O(100)GeV DM bound state, produced p at collider, annihilates to two dark photons.
- The dark photon decays to a pair of SM leptons.
- The dark photons are very light: O(0.1)-O(1)GeV
- \rightarrow boosted, collimated lepton pairs (lepton jets)
- The dark photon coupling to SM is very small
- → two displaced lepton jets back-to-back

Search for Self-Interacting Dark Matter

Experimental Challenges to LLP Search

Object reconstruction:

- Conventional reconstruction methods often do not work well for LLPs
- Standard methods to remove noise etc. often remove our signals
 - Increased vulnerability to background
- Rich final state: how to #CatchThemAll?

Background estimation:

- Particles do not point back to primary vertex:
 - detector center: LLPs from SM, pile-up,...
 - detector volume: conversion, ...
 - outside detector: cosmics, beam gas, ...
- Limits from detector acceptance & resolution

Triggering:

Trigger strategy B:

trigger on decay products

→ displaced objects, soft and/or with high multiplicity, are very difficult to trigger!

Trigger strategy A:

trigger on production process: ISR or new heavy particle(s) (e.g. HT) → high threshold leads to significant loss in signal efficiency

How do We Look for Dark Matter?

- Physics motivation
- Experimental overview
- Search for WIMP dark matter
- Dark matter beyond WIMPs
- Future dark sector search

LHC in the High-Luminosity Era

CMS Upgrade for HL-LHC

Trigger/HLT/DAQ

- Track information at L1-Trigger
- L1-Trigger: 12.5 µs latency output 750 kHz
- HLT output ≃7.5 kHz

Barrel EM calorimeter

- Replace FE/BE electronics
- Lower operating temperature (8°)

Muon systems

- Replace DT & CSC FE/BE electronics
- Complete RPC coverage in region 1.5 < η < 2.4
- Muon tagging 2.4 < η < 3

Replace Endcap Calorimeters

- Rad. tolerant high granularity
- 3D capability

Add MIP Timing Detector

(outside tracker: barrel + endcaps; 30ps timing res.)

- Replace Tracker Radiation-hard; fine resolution
 - Extend |n| coverage up to 4
 - Dual-side sensor in outer tracker \rightarrow trigger

How to Design an Upgrade Detector

New Physics with Forward Signature

Light resonance decay $(Y \rightarrow XX)$ when Y is light (e.g. Higgs/Z) & mX ~ mY/2

→ Forward extension in tracker etc. will improve acceptance & sensitivity

If X is *long-lived*, its displaced decay product will have an angular separation from extrapolation to the interaction point.

- → Can we use the fine spacial & energy resolution in the HGCAL to <u>trigger on the</u> <u>angular info</u>?
- → Preliminary study very promising!

Dark matter produced in VBF through Higgs-portal or other scalar mediator

Fast Timing Upgrades at HL-LHC

- <u>Calorimeter upgrades</u> (ECAL electronics + HGCAL) will provide precise timing (10s of ps) for high energy photons in barrel + high energy hadrons/photons in endcap
- <u>MIP Timing Detector (MTD)</u> outside tracker volume, can provide precision timing (~30ps) for charged hadrons & converted photons down to a few GeV.
- <u>Muon system timing improvement</u>: 12.5 ns \rightarrow 1ns in DT
- ightarrow What does it mean for LLP searches?

Search for LLPs with Fast Timing

Trigger on Displaced Tracks

Trigger on Displaced Muons

Work in progress:

Can we use muon system + displaced tracks@L1 and/or timing information to lower the pT threshold and trigger on <u>soft muons?</u>

Dark Sector Search beyond CMS

12/05/2019

Conclusions and Outlook

- A complex dark sector is well-motivated in both particle physics & cosmology
 - Bypass stringent WIMP limits from (in)direct detection & collider searches
 - Provide dark matter candidates; explain evolution of early universe
- The LHC is a *unique machine* to probe the dark sector
 - Broad range of lifetime & decay products \rightarrow need dedicated searches!
- New *signature-driven* dark sector searches are underway with LHC Run2 data
 - Results have broad reinterpretation value
 - Challenges in trigger, reconstruction, & background estimation
- Detector and trigger upgrades @HL-LHC bring tantalizing prospects
 - Increased forward acceptance and improved resolution
 - New L1 trigger capabilities open up new possibilities
- Searches @ ATLAS and CMS complementary to other (non-) collider experiments

THANK YOU!

The WIMP Paradigm

If DM is made of particles

\rightarrow WIMP Miracle

- single, stable particle ~O(100GeV)
- fits relic density
- viable candidates in BSM theories

Three COMPLEMENTARY experimental methods

thermal freeze-out (early Univ.) indirect detection (now)

Dark Matter Direct Detection

Dark Matter Indirect Detection

Annihilation

Decay

No WIMPs Found (outside Congress) yet

- Collider/DD/ID combination plot shown as scattering xsec vs WIMP DM mass
 - Spin-Dependent: *less sensitive* at direct detection due to coupling to nuclear spin
 - In general, collider searches are more sensitive for low mass WIMP DM

Displaced Photon Search: Trigger

HLT_DisplacedPhoton60_R9Id90_CaloIdL_IsoL_PFHT350_v1

L1 Seed			HLT EG E _T	Hov (E	verE B)	Hov (El	erE E)	R (EB,	.9 /EE)	σ _{iηiη} (EB)	σ _{iηiη} (EE)	
L1SingleEG40 60 GeV			0.15		0.1		0.9		0.014	0.035		
	S _{ma} Ma	S _{major} S _{major} Max Min		r S _{minor} Max	S _{min} Mi	nor 7 n 7	Track Veto	Min Track p _T			nTra	acks
	1.	5	0.0	0.4	0.0)	Yes	5	GeV	0.2	2	1
					EB E					EE		
	Constar		stant	a b c a		b	С					
		Isolation		$(a + b * E_T + c * E_T * E_T)$								
			Pho	ton	5.0	0.01	L 0	.0	8.0	0.007	0.0	
		Ne	eutral	Hadron	12.5	0.03	3 3E	E-5	7.5	0.032	3E-5	
		H	Iollow	7 Track	6.0	0.00	2 0	.0	6.0	0.002	0.0	
		Min Calo Jet		alo Jet <u>p</u> _T	Cal	o H _T	Min PF		PF Jet p _T		FH _T	
		10 GeV		175	GeV	1	5 G	eV	350) GeV		

Displaced Photon Search: Trigger

- Lowest possible threshold on single photon pT (combined with HT) for acceptable trigger rate
- Unique filters on ECAL cluster shape info to identify displaced photons
- Improvements possible for future search dedicated to dark showers

HLT_DisplacedPhoton60_*_PFHT350_v HLT_Photon175_v HLT_Photon120_*_EBOnly_PFMET40_v HLT_DoublePhoton60_v HLT_Photon42_*_Photon25_*_Mass15_v HLT_Photon90_CaloIdL_PFHT600_v

Displaced Photon Search: OOT Photon ID

RecHit Energy in SC (GeV) [rhEcut: 1.0

MSB $c\tau = 2191 \text{ mm}$

2.6

2.58 2.56

2.54

2.52 2.5

2.48

2.46 2.44

2.42

- Standard photon reconstruction removes ECAL hits above a few GeV & seed time > |3| ns \rightarrow removes our signal!
- \rightarrow build dedicated, custom out-of-time (OOT) photon collection
 - RecHits \rightarrow Clusters \rightarrow SuperClusters \rightarrow Photon Producer
- New shower shape variables added to standard photon ID variables: OOT photon clusters more elliptical than prompt
- Recalculated effective areas & pT scaling for isolations

Events

Selections are optimized with multi-variant analysis

Displaced Photons: ABCD method

- <u>Signal selection</u>:
 - Single photon dataset, signal trigger
 - At least one tightly ID-ed photon
 - nJets>=3; HT>400GeV
- Background estimation:
 - Final yield estimated with ABCD method
 - Assuming photon time & E_T^{miss} uncorrelated
 - Four equations with μ four unknowns: Bkg_A, c1, c2, μ
 - Count data in each category
 - Count expected signal in each category
 - Solve the equations!
 - Validated in control regions
 - γ+jets; QCD; DY+LL

 $N_{A} = Bkg_{A} + \mu \times Sig_{A}$ $N_{B} = c_{1} \times Bkg_{A} + \mu \times Sig_{B}$ $N_{D} = c_{2} \times Bkg_{A} + \mu \times Sig_{D}$ $N_{C} = c_{1} \times c_{2} \times Bkg_{A} + \mu \times Sig_{C}$

Displaced Photon Search: Signal Region

- Leading photon:
 - $p_T^{\gamma} > 70$
 - $|\eta_{\gamma}| < 1.4442$
 - $R_9 > 0.9$
 - S_{minor} < 0.4 (will be updated)
 - Pass tight <u>GED</u>/OOT photon ID + $|\Delta R(\gamma, \text{All Tracks})| > 0.2$
- Signal trigger fired

- $nJets \ge 3$
 - Jet selection:
 - $p_T^{jet} > 30$
 - $|\eta_{jet}| < 3$
 - Pass tight jet ID (2017)
 - If γ_0 passes loose GED ID *H/E* and $\sigma_{i\eta i\eta}$, then $\Delta R(\text{jet}, \gamma_0) > 0.3$
- $H_T > 400$ (using jets as above)

	GMSB Parameter Space											
ct (cm)	0.1	10	200	400	600	8	00	1000	1200			
Λ (TeV)	100	150	200	250	300	3	50	400				
						HVDS Paramet			ter Sp	ace		
				cτ (cm) 0.1 10		10	50	100	250	500	1000	
				$m_{Z^{\prime}} \left(GeV \right)$		300	500	800	1000			
				$m_{\pi,dark}$ (GeV)		20	40	60				

Displaced Photon Search: Control Region I

- **γ** + jets control region selection
- Leading Photon:
 - $|\eta_{\gamma}| < 1.4442$
 - $p_T^{\dot{\gamma}} > 70$
 - Pass tight <u>GED</u> + no pixel seed/OOT photon ID + $|\Delta R(\gamma, \text{All Tracks})| > 0.2$
- Subleading Photon:
 - $p_T^{\gamma} > 25$
 - $\dot{H}/E < 0.12$
- (nJets == 1) OR (nJets == 2 AND $p_T^{jet_1}/p_T^{\gamma_0} < 0.2$) $[p_T^{jet} > 30]$
- $|\Delta\phi(\gamma_0 Jet_0)| > 2.1$
- <u>Apply optional MET filters</u>
- Diphoton trigger fired

QCD control region selection

- Leading Photon:
 - $|\eta_{\gamma}| < 1.4442$
 - $p_T^{\gamma} > 70$
 - $R_9 > 0.5$
 - H/E < 0.12
 - $\sigma_{i\eta i\eta} < 0.015$
 - Fail loose GED/OOT photon ID Charged Hadron Iso > 5 | | Neutral Hadron Iso > 10 | | Photon Iso > 4.0 (GED), Track Iso > 7 (OOT)
- Subleading Photon:
 - $p_T^{\gamma} > 25$
 - $\dot{H}/E < 0.12$
- nJets $\ge 3 [p_T^{jet} > 30]$
- <u>Apply optional MET filters</u>
- Diphoton trigger fired

Displaced Photon Search: Control Region II

$DY \rightarrow LL$ selection

- Two photons:
 - $|\eta_{\gamma}| < 1.4442$
 - $p_T^{\gamma} > 40$
 - Pass tight <u>GED</u> + HAVE pixel seed/OOT photon ID + |Δ*R*(γ, All Tracks)| < 0.2
- 60 < diphoton invariant mass < 150
- <u>Apply optional MET filters</u>
- DoubleEle trigger fired

Displaced Photon Search: ABCD Closure

Control	Bou	ndary		Predicted			
Region [Data]	Time MET [ns] [GeV]		Α	В	С	D	$C = B^*D/A$
γ+jets	1	150	$3.8e{+}05\pm617$	345 ± 18.6	4 ± 2	$4.16\text{e}{+03}\pm64.5$	3.77 ± 0.211
QCD	1	150	$7.67e \pm 05 \pm 876$	$6.62e{+}03 \pm 81.4$	78 ± 8.83	$7.53\text{e}{+}03\pm86.8$	65.1 ± 1.1
DY→LL	1	150	$2.98e{+}06 \pm 1.73e{+}03$	$1.96\text{e}{+03} \pm 44.2$	19 ± 4.36	$2.96\text{e}{+}04\pm172$	19.4 ± 0.453

Object Reconstruction: Lepton Jet

 Preliminary lepton jet reconstruction studied using a dark photon particle gun for all three (e, mu, pi) lepton jet types: results promising w/ muon type showing best performance

- mass: 1.2 GeV
- eta: (-3,3)
- phi: (-pi, pi)
- pT: 0-100 GeV, flat
- decay length: 1m, exponential falling
- decay product
 - di-electron, di-muon, di-pion ratio
 - 0.3405:0.3405:0.319

iDM: Parameter Space

- Five parameters in the model:
 - DM mass (ground state) m1, mass splitting Δ , dark photon mass mA'
 - dark gauge coupling αD , mixing parameter ϵ
- Small mass splitting & mA'>~m1+m2 for relic density from co-annihilation $e^2 \alpha_D \left(\frac{m_1}{m_1}\right)^2 \equiv y$

- Annihilation rate depends on m1 & interaction strength y
- \rightarrow Set <u>mA' = 3x m1</u>, choose <u>two mass splitting (10%, 40%)</u> consistent w/ theory paper
 - Scan χ 1 mass & χ 2 decay length for collider search: scale xsec by corresponding couplings 12/05/2019 Yangyang Cheng | Seminar@BNL 55

Detector Upgrade in the Forward Region

Tracker Upgrade: Performance

Tracker Upgrade: LLP Prospects

• Heavy stable charged particles (e.g. split SUSY): high dE/dx in silicon sensor

- Phase2 inner pixel has analogue readout:
 - 4 (maybe more?) bit time-over-threshold info provides good resolution
- Phase2 outer tracker has digital readout + dedicated overthreshold bit (HIP flag) with programmable threshold (currently set at 1.4MIP)

Trigger on Forward LLPs with HGCAL

Toy simulation:

- Work in η-φ depth space in calorimeter endcap (CE)
 - 2D cluster on layer \rightarrow 3D shower
- Trigger cells (2x2 or 3x3) with >=2MIP energy
- Linear fit of energy-weighted η vs depth and φ vs depth
- Calculate total angle α between shower axis and fitted line back to primary vertex

\rightarrow Very promising! Further studies in full simulation

Calorimeter Endcap Trigger Primitives

Quantities	Bits	Total bits
E_T with and without PU subtraction	16, 16	32
Endcap, fraction in CE-E, fraction in back CE-H, max energy layer	1, 13, 12, 6	32
Shower start η , ϕ , z	11, 11, 10	32
Number of cells, quality flags, extra data flags	8, 12, 12	32
Minimum total		128
Optional shape quantities	8 × 16	128
Optional e/γ reco E_T with and without PU subtraction	16, 16	32
Optional subcluster 0 E_T , $\Delta \eta$, $\Delta \phi$	16, 8, 8	32
Optional subcluster 1 E_T , $\Delta \eta$, $\Delta \phi$	16, 8, 8	32
Optional subcluster 2 E_T , $\Delta \eta$, $\Delta \phi$	16, 8, 8	32
Optional subcluster 3 E_T , $\Delta \eta$, $\Delta \phi$	16, 8, 8	32
Maximum total		416

for each cluster

Fast Timing: Displaced Photon

HL-LHC Upgrade: Muon System

Improved performance with HL-LHC upgrade:

- Higher efficiency: minimal dependency on pile-up
- Lower rate: better measurement \rightarrow purer sample
- Improved timing resolution w/ eletronics upgrade
 - 12.5 ns \rightarrow 1ns in DT
- Extended forward trigger coverage: $|\eta| < 2.4 \rightarrow |\eta| < 2.8$
- Benefits from the L1 track trigger for prompt muons

Muon system upgrade scope for HL-LHC:

- Existing detectors:
 - upgrade barrel DT and endcap CSC electronics for 40MHz readout
- Extend forward coverage:
 - GEM & RPC detectors: 1.6< n<2.4
 - ME0 (for trigger): 2.4< η<2.9

Muon Upgrade: LLP Prospects

CMS Phase-2 Simulation Preliminary 14 TeV, <PU>=0

Dedicated "Standalone displaced muon"

reconstruction algorithm w/ HL-LHC upgrade, using on hits in muon system w/o constraints wrt IP: Improve reconstruction eff. & sensitivity (GMSB smuon projection) compared w/ "Standalone muon" **HSCP**: heavy, slow-moving, highly-ionizing \rightarrow muon system

- **RPC upgrade**: ~1.5ns TOF resolution to each RPC station → **RPC-HSCP trigger**: linear fit to time vs distance from IP
- Improve mass resolution:
 - Ph2 trigger level comparable to Ph1 offline level
 - Ability to trigger on, at the correct BX, HSCP with velocity as low as β ~0.25
 - Increase reconstruction efficiency for low β

Trigger for displaced (soft) dimuon

L1 stubs + MTD timing

L1 stubs + muon matching

- ~A factor of 10 rate reduction by matching L1stubs to muon hits
- Current L1 displaced muon trigger uses L1Trk veto: suited for large displacement
- Can we match muon hits to displaced tracks at L1 to trigger on muons w/ small displacement?

LLP w/ Fast Timing: Trigger Potential

• On-chip filtering: read out delayed hits only

– need 20x-100x suppression for acceptable rate: what's the threshold?

# of Coincidences	Threshold for 20x suppression	Threshold for 100x suppression
1	350ps	440ps
2	185ps	290ps
3	115ps	200ps

(Delphes simulatin of QCD sample; tracks w/pT>2GeV)

- Calo-based ROI: trigger for delayed jets
 - improve trigger efficiency for signal by lowering pT threshold
 - compute time delay threshold for sufficient bkgd reduction
 - calo-trigger seed, use mean timestamp of hits in jet cone (dR<0.4)
 - 20x suppression @180ps; 100x suppression @250ps
 - Background: Delphes simulation of QCD sample, jpT>30GeV
 - 250ps timing cut retains Higgsino signal efficiency of O(10%)
 - precision timing particularly useful for light LLPs

Fast Timing: LLP Mass Resonance

