ATLAS BigPanDA monitoring Bellell DDM

S. Padolski (NPPS)

BigPanda Monitoring

Introduction

Reference talks:

- Alexei (https://indico.bnl.gov/event/6290/)
- Tadashi (https://indico.bnl.gov/event/6333/)

Instances: Atlas (https://bigpanda.cern.ch), Compass, EC2 (LSST, LQCD)
http://pandamonitor.org

Current content

- A window into the PanDA system
- > 100 different views
- From production dashboards to logs
- Covers scope in range 1...10¹¹ events

Current usage

17000 json requests a day

- 6.5k (+3%) user queries a day
- From 1 to 626 pages a day per user
- 1110 unique monthly active users
- 342 unique daily users

Is a one of primary tool ATLAS wide for shifters, experts and ADC in general

Architecture

Data-flow diagram of the BigPanDA monitor

Self monitoring

Operation Intelligence

- A lot of routine work is required for exposing and digging into problems
- We develop a mechanization such of work
 - BigPanDA attempts to provide information in the user friendly, quickly accessible way
 - OI attempts to process this information as a user would do

Operation Intelligence

A prototype of spotting failed jobs

- Finds time windows with concentration of failures
- Build a failure model within each time window
- Extract from models most influencing factors (pilot version, computing site, task,...)
- Builds clusters of failed jobs within defined space
- Provides links to the monitoring

Time window 2019-10-08 22:30:00 to 2019-10-08 23:00:00

https://bigpanda.cern.ch/jobs/?endtimerange=2019-10-08T22:30:00|2019-10-08T23:00:00&computingsite=ARNES_MCORE&pilotw
https://bigpanda.cern.ch/jobs/?endtimerange=2019-10-08T22:30:00|2019-10-08T23:00:00&computingsite=ARNES_MCORE&pilotw

Time window 2019-10-09 01:45:00 to 2019-10-09 02:15:00 https://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T01:45:00|2019-10-09T02:15:00&computingsite=UKI-SOUTHGRID-CAM-https://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T01:45:00|2019-10-09T02:15:00&computingsite=AGLTZ UCORE&;edita

Spot #2
Time window 2019-10-09 04:30:00 to 2019-10-09 05:00:00
<a href="https://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933803&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=1933893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=193893&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=193803&destinationshttps://bigpanda.cern.ch/jobs/?endtimerange=2019-10-09T04:30:00/2019-10-09T05:00:004/editaskid=193803&destinationshttps://bigpanda.cern.ch//bigpanda.cern.ch/jobs/?editaskid=193803&destinationshttps://bigpanda.cern.ch/jobs/?editaskid=1

Forecasting

- GRID computing is a big queue
 - When is my order to get served?
 - When I do receive needed result?
 - How much can I order in principle to get result in reasonable time?
- Campaign is the ProdSys2 object which unites large computing activity (10¹⁰ events) and involves different parties (physicists, managers, shifters)
- A "Hot" model was developed
- Currently it is getting to production

Usability R&D

Aims:

- Raise UP level of BigPanDA monitoring usability
- Build the whole system at one presentation technology stack
- Make development easy, from well defined bricks
- Technology assessment is finishing (Tatiana is leading this effort)

Introduction

Reference talks: Paul (https://indico.bnl.gov/event/6124/)

Distributed computing

Distributed Data Management

Distributed Data Management Scale

BNL time Developments

- Data mover scripts (PNNL->BNL)
- Functional tests subsystem
- Tider integration with DIRAC Resource system
- Advanced transfers load balancer. Developed to prevent possible data transfers stucks. Implements
 accurate submissions to the FTS served respecting:
 - SE current performance
 - Links quality
 - Recent experience of completed operations
 - Current queue state
 - Operations importance
- Deletion at scales (bulk operations, parallel processing)
- SQL queries analysis and optimization
- Simple DDM monitoring
- + Operational support

Operational experience: 2 DDM (and whole DIRAC) down due to server disk spaces exhausting and one due to RMS system failure, one failed deployment. Successful raw files distribution during data taking