PHENIX Searches for Low Mass Dark Photons

Yorito Yamaguchi
for the PHENIX collaboration
Stony Brook University
Muon g-2 anomaly

- Observed 3.6σ discrepancy from SM prediction is one of possible BSM phenomena.
- Dark photon can explain this discrepancy as well as other astrophysical anomalies.
- Many experiments contributed for the dark photon search.
 - Theory curves from Hye-Sung Lee & Bill Marciano.
- Muon g-2 explainable band (90% CL) still survives for 30-50 MeV.

- Getting more important as a candidate of the cause for the muon g-2 anomaly due to the recent SUSY result at LHC.
- Short-term aim: Covering the entire region of the muon g-2 explainable band.
Search in π^0/η Dalitz decays

Measurement of $\pi^0/\eta \rightarrow \gamma U \rightarrow \gamma e^+e^-$ in Dalitz decays

- Aim to detect possible e^+e^- pairs from the dark photons in the π^0/η Dalitz decayed e^+e^- pairs
 - The dark photon exclusively decays into e^+e^- pair.
 - Its natural width is very narrow.
 - Expected peak width = detector mass resolution
 - Same approach with COSY-WASA & HADES

Important requirements for this measurement

1. A large data sample of e^+e^- from π^0/η Dalitz decays
2. A very good mass resolution of e^+e^-
Relativistic Heavy Ion Collider at BNL

- Collision species: \(p+p, d+Au, Au+Au, Cu+Cu, U+U, \ldots \)
- Maximum collision energy: 200 (for HI), 500 (for \(p+p \)) GeV
- Running since 2001

PHENIX experiment is originally designed for the study of Quark Gluon Plasma.

- Excellent capability for \(e^+e^- \) measurements
How to measure electrons

- Central arm at mid-rapidity: $|\eta| < 0.35$
- Momentum measurement of charged tracks by DC & PC
 - $\delta p/p = 1\% \oplus 1.1\% \times p$ [GeV/c]
- Electron identification by RICH & E/p matching
 - Charged hadron rejection power $\sim 10^3$
 - Electron trigger requires with a coincidence of a RICH hit & correlated EMCal energy deposit
- Promising measurements of e^+e^- with high statistics
2006 p+p & 2008 d+Au datasets were analyzed.

- Background pairs: **combinatorial** pairs, **semi-correlated jet** pairs, **cross** pairs from double Dalitz decays
- Each BG contribution was evaluated using Like-sign pairs.
Background pairs (cont.)

- **Jet & cross** pair contributions are consistent for both p+p and d+Au as expected
 - ✓ p+p & d+Au datasets are normalized in $m_{ee} < 30$ MeV
 - → Background contributions are very well understood.
Measured e^+e^- spectra can be well described by a "cocktail" of hadron decays + BG.

- 400k (p+p) + 1.0M (d+Au) = total 1.4M e^+e^- Dalitz pairs
- No significant dark photon signal
Mass resolution of the PHENIX detector was calculated by the GEANT-based simulation tuned to match the real data.

✓ Considering the real e^+e^- p_T spectrum, an expected dark photon peak width is about 3 MeV (for inclusive p_T).
Confidence level calculation

CLs approach

- Widely accepted way to compute confidence levels for hypotheses with limited signal sensitivities
- Famous “Brazil band plot” for Higgs search at LHC
- Relative likelihoods of how well the data is described by:
 a. Only background (Dalitz continuum)
 b. Signal (dark photon) + Background

Famous ATLAS Brazil band plot
Expected reach with 1.4M events & 3 MeV of σ_{ee}
Expected reach with 1.4M events & 3 MeV of σ_{ee}
📍 1, 2σ statistical fluctuations of the expected reach
Expected reach with 1.4M events & 3 MeV of σ_{ee}

1, 2σ statistical fluctuations of the expected reach

Observed upper limit with the PHENIX detector

- Including systematic errors from uncertainties on the Dalitz continuum & σ_{ee}
Summary and outlooks

- Dark photon search is being conducted at the PHENIX experiment.
 - Searching for the dark photon in π^0/η Dalitz decays
 - 1.4M pairs in p+p (2006) and d+Au (2008) datasets
 - Good mass resolution at PHENIX ~ 3MeV
 → Improved upper limits of the dark photon in 30-90MeV, but a small region in the muon g-2 explainable band still survives.

- Future plan of the dark photon search at PHENIX
 - Increase of statistics by adding the 2009 p+p data
 • Comparable statistics to the 2006 p+p data & an additional detector installed near the beam pipe
 • Paper preparation is now ongoing, and we hope to submit the paper soon.
 - Long-lived dark photon search with the 2014 Au+Au data
 • Secondary vertex measurement by VTX